Advertisements
Advertisements
प्रश्न
Rationalise the denominators of : `(2sqrt3)/sqrt5`
उत्तर
`(2sqrt3)/sqrt5`
`= (2sqrt3)/sqrt5 xx sqrt5/sqrt5`
`= (2 sqrt(3 xx 5))/(sqrt (5 xx 5))`
`= (2 sqrt(15))/sqrt25`
`= (2 sqrt(15))/5`
APPEARS IN
संबंधित प्रश्न
Rationalize the denominator.
`4/(7+ 4 sqrt3)`
Rationalize the denominator.
`1/(sqrt 3 - sqrt 2)`
If `sqrt2` = 1.4 and `sqrt3` = 1.7, find the value of `(2 - sqrt3)/(sqrt3).`
Simplify by rationalising the denominator in the following.
`(2sqrt(3) - sqrt(6))/(2sqrt(3) + sqrt(6)`
Simplify the following :
`sqrt(6)/(sqrt(2) + sqrt(3)) + (3sqrt(2))/(sqrt(6) + sqrt(3)) - (4sqrt(3))/(sqrt(6) + sqrt(2)`
In the following, find the values of a and b:
`(3 + sqrt(7))/(3 - sqrt(7)) = "a" + "b"sqrt(7)`
In the following, find the value of a and b:
`(sqrt(3) - 1)/(sqrt(3) + 1) + (sqrt(3) + 1)/(sqrt(3) - 1) = "a" + "b"sqrt(3)`
If x = `(7 + 4sqrt(3))`, find the values of
`x^3 + (1)/x^3`
Show that: `x^2 + 1/x^2 = 34,` if x = 3 + `2sqrt2`
Show that: `(3sqrt2 - 2sqrt3)/(3sqrt2 + 2sqrt3) + (2 sqrt3)/(sqrt3 - sqrt2) = 11`