Advertisements
Advertisements
Question
In the following, find the values of a and b:
`(3 + sqrt(7))/(3 - sqrt(7)) = "a" + "b"sqrt(7)`
Solution
`(3 + sqrt(7))/(3 - sqrt(7)`
= `(3 + sqrt(7))/(3 - sqrt(7)) xx (3 + sqrt(7))/(3 + sqrt(7)`
= `(3 + sqrt(7))^2/((3)^2 - (sqrt(7))^2`
= `(9 + 6sqrt(7) + 7)/(9 - 7)`
= `(16 + 6sqrt(7))/(2)`
= `8 + 3sqrt(7)`
= `"a" + "b"sqrt(7)`
Hence, a = 8 and b = 3.
APPEARS IN
RELATED QUESTIONS
Rationalize the denominator.
`1/(3 sqrt 5 + 2 sqrt 2)`
Rationalise the denominators of : `[sqrt6 - sqrt5]/[sqrt6 + sqrt5]`
Simplify by rationalising the denominator in the following.
`(sqrt(5) - sqrt(7))/sqrt(3)`
Simplify by rationalising the denominator in the following.
`(3sqrt(5) + sqrt(7))/(3sqrt(5) - sqrt(7)`
Simplify the following
`(4 + sqrt(5))/(4 - sqrt(5)) + (4 - sqrt(5))/(4 + sqrt(5)`
Simplify the following :
`(6)/(2sqrt(3) - sqrt(6)) + sqrt(6)/(sqrt(3) + sqrt(2)) - (4sqrt(3))/(sqrt(6) - sqrt(2)`
In the following, find the values of a and b:
`(sqrt(3) - 2)/(sqrt(3) + 2) = "a"sqrt(3) + "b"`
Evaluate, correct to one place of decimal, the expression `5/(sqrt20 - sqrt10)`, if `sqrt5` = 2.2 and `sqrt10` = 3.2.
Show that Negative of an irrational number is irrational.
Show that: `(4 - sqrt5)/(4 + sqrt5) + 2/(5 + sqrt3) + (4 + sqrt5)/(4 - sqrt5) + 2/(5 - sqrt3) = 52/11`