Advertisements
Advertisements
Question
Simplify by rationalising the denominator in the following.
`(3 - sqrt(3))/(2 + sqrt(2)`
Solution
`(3 - sqrt(3))/(2 + sqrt(2)`
= `(3 - sqrt(3))/(2 + sqrt(2)) xx (2 - sqrt(2))/(2 - sqrt(2)`
= `(3(2 - sqrt(2)) - sqrt(3)(2 - sqrt(2)))/((2)^2 - (sqrt(2))^2)`
= `(6 - 3sqrt(2) - 2sqrt(3) + sqrt(6))/(4 - 2)`
= `(6 - 3sqrt(2) - 2sqrt(3) + sqrt(6))/(2)`
APPEARS IN
RELATED QUESTIONS
Rationalize the denominator.
`4/(7+ 4 sqrt3)`
Rationalise the denominators of : `[sqrt6 - sqrt5]/[sqrt6 + sqrt5]`
Simplify by rationalising the denominator in the following.
`(5)/(sqrt(7) - sqrt(2))`
Simplify by rationalising the denominator in the following.
`(5 + sqrt(6))/(5 - sqrt(6)`
Simplify the following
`(3)/(5 - sqrt(3)) + (2)/(5 + sqrt(3)`
If x = `(7 + 4sqrt(3))`, find the values of :
`(x + (1)/x)^2`
If x = `((sqrt(3) + 1))/((sqrt(3) - 1)` and y = `((sqrt(3) - 1))/((sqrt(3) + 1)`, find the values of
x3 + y3
Evaluate, correct to one place of decimal, the expression `5/(sqrt20 - sqrt10)`, if `sqrt5` = 2.2 and `sqrt10` = 3.2.
Draw a line segment of length `sqrt8` cm.
Show that: `(4 - sqrt5)/(4 + sqrt5) + 2/(5 + sqrt3) + (4 + sqrt5)/(4 - sqrt5) + 2/(5 - sqrt3) = 52/11`