Advertisements
Advertisements
प्रश्न
If x = `(7 + 4sqrt(3))`, find the value of
`sqrt(x) + (1)/(sqrt(x)`
उत्तर
`sqrt(x) + (1)/(sqrt(x)`
Squaring Both sides we get
`(sqrt(x) + (1)/sqrt(x))^2 = x + (1)/x + 2` ----(1)
We will first find out `x + (1)/x`
`x + (1)/x = (7 + 4sqrt(3)) + (1)/((7 + 4sqrt(3))`
= `((7 + 4sqrt(3)^2 + 1))/((7 + 4sqrt(3))`
= `(49 + 48 + 56sqrt(3) + 1)/((7 + 4sqrt(3))`
= `(98 + 56sqrt(3))/((7 + 4sqrt(3))`
= `(14(7 + 4sqrt(3)))/((7 + 4sqrt(3))`
= 14
substitutingin (1)
`(sqrt(x) + (1)/sqrt(x))^2 = x + (1)/x + 2`
= 14 + 2
= 16
∴ `sqrt(x) + (1)/sqrt(x)` = 4
APPEARS IN
संबंधित प्रश्न
Rationalize the denominator.
`1/sqrt5`
Rationalize the denominator.
`2/(3 sqrt 7)`
Rationalize the denominator.
`1/(sqrt 3 - sqrt 2)`
Rationalise the denominators of : `[ sqrt3 - sqrt2 ]/[ sqrt3 + sqrt2 ]`
Rationalise the denominator of `1/[ √3 - √2 + 1]`
Simplify by rationalising the denominator in the following.
`(2sqrt(3) - sqrt(6))/(2sqrt(3) + sqrt(6)`
In the following, find the value of a and b:
`(7 + sqrt(5))/(7 - sqrt(5)) - (7 - sqrt(5))/(7 + sqrt(5)) = "a" + "b"sqrt(5)`
If x = `(4 - sqrt(15))`, find the values of
`(1)/x`
If x = `(4 - sqrt(15))`, find the values of
`x + (1)/x`
If x = `((sqrt(3) + 1))/((sqrt(3) - 1)` and y = `((sqrt(3) - 1))/((sqrt(3) + 1)`, find the values of
x2 + y2