Advertisements
Advertisements
प्रश्न
Rationalise the denominator and simplify `(sqrt(48) + sqrt(32))/(sqrt(27) - sqrt(18))`
उत्तर
`(sqrt(48) + sqrt(32))/(sqrt(27) - sqrt(18)) = (sqrt(16 xx 3) + sqrt(16 xx 2))/(sqrt(9 xx 3) - sqrt(9 xx 2))`
= `(4sqrt(3) + 4sqrt(2))/(3sqrt(3) - 3sqrt(2))`
= `(4(sqrt(3) + sqrt(2)))/(3(sqrt(3) - sqrt(2))`
= `(4(sqrt(3) + sqrt(2)))/(3(sqrt(3) - sqrt(2))) xx ((sqrt(3) + sqrt(2)))/((sqrt(3) + sqrt(2)))`
= `(4(sqrt(3) + sqrt(2))^2)/(3[(sqrt(3))^2 - (sqrt(2))^2])`
= `(4[(sqrt(3))^2 + 2sqrt(3) xx sqrt(2) + (sqrt(2))^2])/(3(3 - 2))`
= `4/3(3 + 2sqrt(6) + 2)`
= `4/3(5 + 2sqrt(6))`
APPEARS IN
संबंधित प्रश्न
Write the simplest form of rationalising factor for the given surd.
`3 sqrt 72`
Write the simplest form of rationalising factor for the given surd.
`4 sqrt 11`
Write the lowest rationalising factor of : 15 - 3√2
If x =`[sqrt5 - 2 ]/[ sqrt5 + 2]` and y = `[ sqrt5 + 2]/[ sqrt5 - 2 ]`; find : xy
If x = 2√3 + 2√2 , find : `( x + 1/x)^2`
If x = 5 - 2√6, find `x^2 + 1/x^2`
Show that :
`1/[ 3 - 2√2] - 1/[ 2√2 - √7 ] + 1/[ √7 - √6 ] - 1/[ √6 - √5 ] + 1/[√5 - 2] = 5`
Rationalise the denominator and simplify `(2sqrt(6) - sqrt(5))/(3sqrt(5) - 2sqrt(6))`
Rationalise the denominator and simplify `sqrt(5)/(sqrt(6) + 2) - sqrt(5)/(sqrt(6) - 2)`
If x = `sqrt(5) + 2`, then find the value of `x^2 + 1/x^2`