हिंदी

याद कीजिए कि दो वृत्त सर्वांगसम होते हैं, यदि उनकी त्रिज्याएँ बराबर हों। सिद्ध कीजिए कि सर्वांगसम वृत्तों की बराबर जीवाएँ उनके केन्द्रों पर बराबर कोण अंतरित करती हैं। - Mathematics (गणित)

Advertisements
Advertisements

प्रश्न

याद कीजिए कि दो वृत्त सर्वांगसम होते हैं, यदि उनकी त्रिज्याएँ बराबर हों। सिद्ध कीजिए कि सर्वांगसम वृत्तों की बराबर जीवाएँ उनके केन्द्रों पर बराबर कोण अंतरित करती हैं।

योग

उत्तर

वृत्त उन बिंदुओं का समूह है जो एक स्थिर बिंदु से समान दूरी पर होते हैं। इस स्थिर बिंदु को वृत्त का केंद्र कहा जाता है और इस समान दूरी को वृत्त की त्रिज्या कहा जाता है। और इस प्रकार, वृत्त का आकार उसकी त्रिज्या पर निर्भर करता है। इसलिए, यह देखा जा सकता है कि यदि हम बराबर त्रिज्या वाले दो वृत्तों को एक दूसरे को आरोपित करने का प्रयास करते हैं, तो दोनों वृत्त एक दूसरे को ढक लेंगे। इसलिए, दो वृत्त सर्वांगसम होते हैं यदि उनकी त्रिज्या बराबर हो।

दो सर्वांगसम वृत्तों पर विचार कीजिए जिनके केंद्र O और O' हैं तथा बराबर लंबाई की दो जीवाएँ AB और CD हैं।

ΔAOB और ΔCO'D में,

AB = CD    ...(बराबर लंबाई की जीवाएँ)

OA = O'C   ...(सर्वांगसम वृत्तों की त्रिज्याएँ)

OB = O'D   ...(सर्वांगसम वृत्तों की त्रिज्याएँ)

∴ ΔAOB ≅ ΔCO'D    ...(SSS सर्वांगसमता नियम)

⇒ ∠AOB = ∠CO'D    ...(CPCT से)

अतः, सर्वांगसम वृत्तों की बराबर जीवाएँ उनके केन्द्रों पर बराबर कोण अंतरित करती हैं।

shaalaa.com
जीवा द्वारा एक बिन्दु पर अंतरिक कोण
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 10: वृत्त - प्रश्नावली 10. 2 [पृष्ठ २०८]

APPEARS IN

एनसीईआरटी Mathematics [Hindi] Class 9
अध्याय 10 वृत्त
प्रश्नावली 10. 2 | Q 1. | पृष्ठ २०८

संबंधित प्रश्न

सिद्ध कीजिए कि यदि सर्वांगसम वृत्तों की जीवाएँ उनके केन्द्रों पर बराबर कोण अंतरित करें, तो जीवाएँ बराबर होती हैं।


यदि BM और CN त्रिभुज ABC की भुजाओं AC और AB पर खींचे गए लंब हैं, तो सिद्ध कीजिए कि बिंदु B, C, M और N चक्रीय हैं।


केंद्रों O और O' वाले दो वृत्त बिंदुओं A और B पर प्रतिच्छेद करते हैं। A (या B) से होकर एक रेखा PQ रेखाखंड OO' के समांतर खींची जाती है, जो वृत्तों को P और Q पर प्रतिच्छेद करती है। सिद्ध कीजिए कि PQ = 2 OO' है।


यदि P, Q और R क्रमश : एक त्रिभुज की BC, CA और AB भुजाओं के मध्य-बिंदु हैं तथा AD शीर्ष A से BC पर लंब है, तो सिद्ध कीजिए कि बिंदु P, Q, R और D चक्रीय है।


यदि एक चक्रीय चतुर्भुज ABCD के सम्मुख कोणों के समद्विभाजक इस चतुर्भुज के परिगत वृत्त को P और Q, बिंदुओं पर प्रतिच्छेद करते हैं, तो सिद्ध कीजिए कि PQ इस वृत्त का व्यास है।


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×