Advertisements
Advertisements
प्रश्न
यदि sinθ = `7/25`, तो cosθ तथा tanθ का मान ज्ञात कीजिए।
उत्तर १
sin2θ + cos2θ = 1
∴ `(7/25)^2 + cos^2theta = 1` ...............`(∵ sinθ = 7/25)`
∴ `49/625 + cos^2θ = 1`
∴ cos2θ = 1 - `49/625`
∴ cos2θ = `(625 - 49)/625`
∴ cos2θ = `576/625`
∴ cosθ = `24/25` .........(दोनों पक्षों का वर्गमूल लेने पर)
tanθ = `sintheta/costheta`
∴ tanθ = `((7/25))/((24/25))`
∴ tanθ = `7/25 xx 25/24`
∴ tanθ = `7/24`
cosθ = `underline(24/25)`, tanθ = `underline(7/24)`.
उत्तर २
sinθ = `7/25` .....................(दिया है |) .............(1)
मानो कि, ΔPQR में, ∠PQR = 90 और ∠PRQ = θ
sinθ = `"PQ"/"PR"` ....................(2)
∴ `"PQ"/"PR" = 7/25` ...........[(1) और (2) से]
∴ PQ = 7k और PR = 25k
ΔPQR में,
∠PQR = 90°
∴ पायथागोरस के प्रमेय से,
`"PR"^2 = "PQ"^2 + "QR"^2`
∴ `(25k)^2 = (7k)^2 + ("QR")^2`
∴ `625k^2 = 49k^2 + "QR"^2`
∴ `"QR"^2 = 625k^2 - 49k^2`
∴ `"QR"^2 = 576k^2`
∴ QR = 24k .................(दोनों पक्षों का वर्गमूल लेने पर)
cosθ = `"QR"/"PR" = (24k)/(25k) = 24/15`
tanθ = `"PQ"/"QR" = (7k)/(24k) = 7/24`
cosθ = `underline(24/25)` और tanθ = `underline(7/24)`.
APPEARS IN
संबंधित प्रश्न
यदि tanθ = `3/4` तो secθ तथा cosθ का मान ज्ञात कीजिए।
यदि cotθ = `40/9` तो cosecθ तथा sinθ का मान ज्ञात कीजिए।
सिद्ध कीजिए।
cos2θ(1 + tan2θ) = 1
सिद्ध कीजिए।
(secθ - cosθ)(cotθ + tanθ) = tanθ secθ
सिद्ध कीजिए।
`tantheta/(sectheta - 1) = (tantheta + sectheta + 1)/(tantheta + sectheta - 1)`
सिद्ध कीजिए।
`1/(1 - sintheta) + 1/(1 + sintheta) = 2sec^2theta`
यदि sinθ = `11/61`, तो सर्वसमिका का उपयोग करके cosθ का मान ज्ञात कीजिए।
नीचे दिए गए बहुवैकल्पिक प्रश्न के उत्तर का सही विकल्प चुनकर लिखिए।
1 + tan2θ = कितना?
यदि sin θ = `11/61` हो, तो त्रिकोणमितीय सर्वसमिका का उपयोग करके cos θ का मान ज्ञात करो।
θ का निरसन कीजिए:
x = r cosθ तथा y = r sinθ