हिंदी

यदि तीन रेखाएँ जिनके समीकरण y = m1x + c1, y = m2x + c2 और y = m3x + c3 हैं, संगामी हैं तो दिखाइए कि m1(c2 – c3) + m2(c3 – c1) + m3(c1 – c2) = 0 - Mathematics (गणित)

Advertisements
Advertisements

प्रश्न

यदि तीन रेखाएँ जिनके समीकरण y = m1x + c1, y = m2x + c2 और y = m3x + c3 हैं, संगामी हैं तो दिखाइए कि m1(c2 – c3) + m2(c3 – c1) + m3(c1 – c2) = 0

योग

उत्तर

दी गई रेखाओं के समीकरण हैं

y = m1x + c1   …(1)

y = m2x + c2   …(2)

y = m3x + c3   …(3)

समीकरण (1) को (2) से घटाने पर, हमें प्राप्त होता है

0 = (m2 − m1)x + (c2 − c1)

= (m1 − m2)x = c2 − c1

= `x = (c_2 - c_1)/(m_1 - m_2)`

x के इस मान को (1) में रखने पर, हमें प्राप्त होता है

`y = m_1 ((c_2 - c_1)/(m_1 - m_2)) + c_1`

`y = ((m_1c_2 - m_1c_1)/(m_1 - m_2)) + c_1`

`y = (m_1c_2 - m_1c_1 + m_1c_1 - m_2c_1)/(m_1 - m_2)`

`y = (m_1c_2 - m_2c_1)/(m_1 - m_2)`

∴ `((c_2 - c_1)/(m_1 - m_2), (m_1c_2 - m_2c_1)/(m_1 - m_2))` रेखा (1) और (2) का प्रतिच्छेदन बिंदु है।

यह दिया गया है कि रेखाएँ (1), (2), और (3) संगामी हैं। इसलिए, रेखाओं (1) और (2) का प्रतिच्छेदन बिंदु भी समीकरण (3) को संतुष्ट करता है।

= `(m_1c_2 - m_2c_1)/(m_1 - m_2) = m_3 ((c_2 - c_1)/(m_1 - m_1)) + c_3`

= `(m_1c_2 - m_2c_1)/(m_1 - m_2) = (m_3c_2 - m_3c_1 + c_3m_1 - c_3m_2)/(m_1 - m_2)`

= m1c2 - m2c1 - m3c2 + m3c1 - c3m1 + c3m2 = 0

= m1 (c2 - c3) + m2 (c3 - c1) + m3 (c1 - c2) = 0

अत:, m1 (c2 - c3) + m2 (c3 - c1) + m3 (c1 - c2) = 0

shaalaa.com
रेखा का व्यापक समीकरण
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 10: सरल रेखाएँ - अध्याय 10 पर विविध प्रश्नावली [पृष्ठ २४८]

APPEARS IN

एनसीईआरटी Mathematics [Hindi] Class 11
अध्याय 10 सरल रेखाएँ
अध्याय 10 पर विविध प्रश्नावली | Q 10. | पृष्ठ २४८

संबंधित प्रश्न

रेखा x – 7y + 5 = 0 पर लंब और x-अंत: खंड 3 वाली रेखा का समीकरण ज्ञात कीजिए।


रेखाओं `sqrt3"x" + "y" = 1` और `"x" + sqrt3"y" = 1` के बीच का कोण ज्ञात कीजिए।


बिंदुओं (h, 3) और (4, 1) से जाने वाली रेखा, रेखा 7x – 9y – 19 = 0 को समकोण पर प्रतिच्छेद करती है। h का मान ज्ञात कीजिए।


सिद्ध कीजिए कि बिंदु (x1, y1) से जाने वाली और रेखा Ax + By + C = 0 के समांतर रेखा का समीकरण A(x – x1) + B(y – y1) = 0 है।


बिंदु (−1, 3) से रेखा 3x – 4y – 16 = 0 पर डाले गये लंबपाद के निर्देशांक ज्ञात कीजिए।


यदि p और q क्रमशः मूल बिंदु से रेखाओं x cos θ – y sin θ = k cos 2θ और x sec θ +y cosec θ = k पर लंब की लंबाइयाँ हैं तो सिद्ध कीजिए कि p2 + 4q2 = k2


शीर्षों A(2, 3), B(4, –1) और C(1, 2) वाले त्रिभुज ABC के शीर्ष A से उसकी संमुख भुजा पर लंब डाला गया है। लंब की लंबाई तथा समीकरण ज्ञात कीजिए।


यदि p मूल बिंदु से उस रेखा पर डाले लंब की लंबाई हो जिस पर अक्षों पर कटे अंत: खंड a और b हों, तो दिखाइए कि  `1/"p"^2 = 1/"a"^2 + 1/"b"^2`


उन रेखाओं के समीकरण ज्ञात कीजिए जिनके अक्षों से कटे अंतः खंडों का योग और गुणनफल क्रमशः 1 और –6 है।


दर्शाइए कि मूल बिन्दु से जाने वाली और रेखा y = mx + c से θ कोण बनाने वाली उस रेखा का समीकरण `"y"/"x" = ±("m" + tan θ)/(1 - "m" tan θ)` हैं।


(−1, 1) और (5, 7) को मिलाने वाली रेखाखंड को रेखा x + y = 4 किस अनुपात में विभाजित करती है?


समकोण त्रिभुज के कर्ण के अंतय बिंदु (1, 3) और (−4, 1) हैं। त्रिभुज के पाद (legs) (समकोणीय भुजाओ) का एक समीकरण ज्ञात कीजिए जो कि दोनों अक्षरों के सामांतर हो।


समांतर रखाओं 9x + 6y – 7 = 0 और 3x + 2y + 6 = 0 से समदूरस्थ रेखा का समीकरण ज्ञात कीजिए।


दिखाइए कि `(sqrt("a"^2 - "b"^2), 0)` और `(-sqrt("a"^2 - "b"^2), 0)` बिंदुओं से रेखा `"x"/"a" cos θ + "y"/"b" sin θ = 1` पर खींचे गये लंबों की लंबाइयों का गुणनफल b2 है।


एक व्यक्ति समीकरणों 2x – 3y + 4= 0 और 3x + 4y – 5 = 0 से निरूपित सरल रेखीय पथों के संधि बिंदुओं (junction/crossing) पर खड़ा है और समीकरण 6x – 7y + 8 = 0 से निरूपित पथ पर न्यूनतम समय में पहुँचना चाहता है। उसके द्वारा अनुसरित पथ का समीकरण ज्ञात कीजिए।


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×