हिंदी
कर्नाटक बोर्ड पी.यू.सी.पीयूसी विज्ञान 2nd PUC Class 12

You have learnt that plane and convex mirrors produce virtual images of objects. Can they produce real images under some circumstances? Explain. - Physics

Advertisements
Advertisements

प्रश्न

You have learnt that plane and convex mirrors produce virtual images of objects. Can they produce real images under some circumstances? Explain.

टिप्पणी लिखिए

उत्तर

Yes

Plane and convex mirrors can produce real images as well. If the object is virtual, i.e., if the light rays converging at a point behind a plane mirror (or a convex mirror) are reflected a point on a screen placed in front of the mirror, then a real image will be formed.

shaalaa.com
Refraction at Spherical Surfaces and Lenses - Refraction by a Lens
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 9: Ray Optics and Optical Instruments - Exercise [पृष्ठ ३४६]

APPEARS IN

एनसीईआरटी Physics [English] Class 12
अध्याय 9 Ray Optics and Optical Instruments
Exercise | Q 9.18 (a) | पृष्ठ ३४६
एनसीईआरटी Physics [English] Class 12
अध्याय 9 Ray Optics and Optical Instruments
Exercise | Q 18.1 | पृष्ठ ३४७

संबंधित प्रश्न

An object of size 3.0 cm is placed 14 cm in front of a concave lens of focal length 21 cm. Describe the image produced by the lens. What happens if the object is moved further away from the lens?


The image of a small electric bulb fixed on the wall of a room is to be obtained on the opposite wall 3 m away by means of a large convex lens. What is the maximum possible focal length of the lens required for the purpose?


A man with normal near point (25 cm) reads a book with small print using a magnifying glass: a thin convex lens of focal length 5 cm.

(a) What is the closest and the farthest distance at which he should keep the lens from the page so that he can read the book when viewing through the magnifying glass?

(b) What is the maximum and the minimum angular magnification (magnifying power) possible using the above simple microscope?


Figure shows an equiconvex lens (of refractive index 1.50) in contact with a liquid layer on top of a plane mirror. A small needle with its tip on the principal axis is moved along the axis until its inverted image is found at the position of the needle. The distance of the needle from the lens is measured to be 45.0 cm. The liquid is removed and the experiment is repeated. The new distance is measured to be 30.0 cm. What is the refractive index of the liquid?


An equiconvex lens of focal length 'f' is cut into two identical plane convex lenses. How will the power of each part be related to the focal length of the original lens ?


A double convex lens of + 5 D is made of glass of refractive index 1.55 with both faces of equal radii of curvature. Find the value of its radius of curvature.


Two concave lenses L1 and L2 are kept in contact with each other. If the space between the two lenses is filled with a material of smaller refractive index, the magnitude of the focal length of the combination


Two converging lenses of unequal focal lengths can be used to reduce the aperture of a parallel beam of light without loosing the energy of the light. This increase the intensity. Describe how the converging lenses should be placed to do this.


A convex lens forms a real image of a point object placed on its principals axis. If the upper half of the lens is painted black,
(a) the image will be shifted downward
(b) the image will be shifted upward
(c) the image will not be shifted
(d) the intensity of the image will decrease.


A small piece of wood is floating on the surface of a 2.5 m deep lake. Where does the shadow form on the bottom when the sum is just setting? Refractive index of water = 4/3.


A pin of length 2.0 cm lies along the principal axis of a converging lens, the centre being at a distance of 11 cm from the lens. The focal length of the lens is 6 cm. Find the size of the image.


An object approaches a convergent lens from the left of the lens with a uniform speed 5 m/s and stops at the focus. The image ______.


Will the focal length of a lens for red light be more, same or less than that for blue light?


An unsymmetrical double convex thin lens forms the image of a point object on its axis. Will the position of the image change if the lens is reversed?


In many experimental set-ups the source and screen are fixed at a distance say D and the lens is movable. Show that there are two positions for the lens for which an image is formed on the screen. Find the distance between these points and the ratio of the image sizes for these two points.


A plano convex lens has diameter of 10 cm and its thickness at the centre is 0.5 cm. Speed of light in the lens is 2 × 108 ms-1. What is the focal length of the lens?


In the given figure the radius of curvature of the curved face in the planoconvex and the planoconcave lens is 15 cm each. The refractive index of the material of the lenses is 1.5. Find the final position of the image formed.

 


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×