Advertisements
Advertisements
प्रश्न
A(3, 8) और B(-9, 3) इन बिंदुओं को जोड़ने वाले रेखाखंड को Y- अक्ष किस अनुपात में विभाजित करता है।
उत्तर
मानो की, A(3, 8) = (x1, y1); B(-9, 3) = (x2, y2) तथा रेखा AB यह Y-अक्ष को बिंदु M पर प्रतिच्छेदित करती है |
बिंदु M यह Y-अक्ष पर स्थित है | इस प्रकार बिंदु M का x-निर्देशांक शून्य होगा |
मानो, M(0, y) यह रेख AB को m : n के अनुपात में विभाजित करता है |
`x = (mx_2 + nx_1)/(m + n)`
`0 = (m(-9) + n(3))/(m + n)`
∴ 0(m + n) = -9m + 3n
∴ 0 = -9m + 3n
∴ 9m = 3n
∴ `m/n = 3/9`
∴ `m/n = 1/3`
∴ m : n = 1 : 3
A(3, 8) और B(-9, 3) इन बिंदुओं को जोड़ने वाले रेखाखंड को Y-अक्ष 1 : 3 के अनुपात में विभाजित करता है |
APPEARS IN
संबंधित प्रश्न
यदि बिंदु P बिंदुओं A(-1, 7) और B(4,- 3) को जोड़ने वाले रेखाखंड को 2 : 3 अनुपात में विभाजित करता हो तो बिंदु P के निर्देशांक ज्ञात कीजिए।
नीचे दिए गए उदाहरण में रेखाखंड PQ को a : b के अनुपात में विभाजित करने वाले बिंदु A के निर्देशांक ज्ञात कीजिए।
P(-2, -5), Q(4, 3), a : b = 3 : 4
यदि P-T-Q है, तो बिंदु T(-1, 6), बिंदु P(-3, 10) और बिंदु Q(6, -8) को जोड़ने वाले रेखाखंड को किस अनुपात में विभाजित करता है, ज्ञात कीजिए।
बिंदु A(8, 9) और B(1, 2) को जोड़ने वाले रेखाखंड AB को बिंदु P(k, 7) किस अनुपात में विभाजित करता है ज्ञात कीजिए और k का मान बताइए।
बिंदुओ (−2, 4, 7) और (3, –5, 8) को मिलाने वाली रेखा खंड, YZ-तल द्वारा जिस अनुपात में विभक्त होता है, उसे ज्ञात कीजिए।
विभाजन सूत्र का प्रयोग करके दिखाइए कि बिंदु
A(2, –3, 4), B(−1, 2, 1) तथा C`(0, 1/3, 2)` संरेख हैं।
बिंदु A के निर्देशांक ज्ञात कीजिए, जहाँ AB एक वृत्त का व्यास है जिसका केंद्र (2, -3) है तथा B के निर्देशांक (1, 4) हैं।
बिंदुओं (– 4, – 6) और (–1, 7) को मिलाने वाले रेखाखंड को x-अक्ष किस अनुपात में विभाजित करती है? विभाजन बिंदु के निर्देशांक भी ज्ञात कीजिए।
बिंदुओं A(3, 2) और B(5, 1) को मिलाने वाला रेखाखंड बिंदु P पर 1 : 2 के अनुपात में विभाजित हो जाता है। तथा बिंदु P रेखा 3x – 18y + k = 0 पर स्थित है। k का मान ज्ञात कीजिए।
यदि बिंदु A(4, –3) तथा B(8, 5) हो, तो रेखाखंड AB को 3 : 1 के अनुपात में विभाजित करने वाले बिंदु P का निर्देशांक ज्ञात करने के लिए निम्न कृति पूर्ण करो:
कृति:
x = `(mx_2 + nx_1)/square`
∴ x = `(3 xx 8 + 1 xx 4)/(3 + 1)`
∴ x = `(square + 4)/4`
∴ x = `square`,
y = `square/(m + n)`
∴ y = `(3 xx 5 + 1 xx (-3))/(3 + 1)`
∴ y = `(square - 3)/4`
∴ y = `square`