Advertisements
Advertisements
Question
A(3, 8) और B(-9, 3) इन बिंदुओं को जोड़ने वाले रेखाखंड को Y- अक्ष किस अनुपात में विभाजित करता है।
Solution
मानो की, A(3, 8) = (x1, y1); B(-9, 3) = (x2, y2) तथा रेखा AB यह Y-अक्ष को बिंदु M पर प्रतिच्छेदित करती है |
बिंदु M यह Y-अक्ष पर स्थित है | इस प्रकार बिंदु M का x-निर्देशांक शून्य होगा |
मानो, M(0, y) यह रेख AB को m : n के अनुपात में विभाजित करता है |
`x = (mx_2 + nx_1)/(m + n)`
`0 = (m(-9) + n(3))/(m + n)`
∴ 0(m + n) = -9m + 3n
∴ 0 = -9m + 3n
∴ 9m = 3n
∴ `m/n = 3/9`
∴ `m/n = 1/3`
∴ m : n = 1 : 3
A(3, 8) और B(-9, 3) इन बिंदुओं को जोड़ने वाले रेखाखंड को Y-अक्ष 1 : 3 के अनुपात में विभाजित करता है |
APPEARS IN
RELATED QUESTIONS
नीचे दिए गए उदाहरण में रेखाखंड PQ को a : b के अनुपात में विभाजित करने वाले बिंदु A के निर्देशांक ज्ञात कीजिए।
P(-2, -5), Q(4, 3), a : b = 3 : 4
बिंदु A (2, 7) और B(-4, -8) को जोड़ने वाले रेखाखंड AB के त्रिभाजक बिंदुओं के निर्देशांक ज्ञात कीजिए।
A(-14, -10), B(6, -2) को जोड़ने वाले रेखाखंड AB को चार सर्वांगसम रेखाखंडों में विभाजित करने वाले बिंदुओं के निर्देशांक ज्ञात कीजिए।
विभाजन सूत्र का प्रयोग करके दिखाइए कि बिंदु
A(2, –3, 4), B(−1, 2, 1) तथा C`(0, 1/3, 2)` संरेख हैं।
एक समचतुर्भुज का क्षेत्रफल ज्ञात कीजिए जिसके शीर्ष, इसी क्रम में, (3, 0), (4, 5), (-1, 4) और (-2, -1) हैं। [संकेत: समचतुर्भुज का क्षेत्रफल = `1/2` (उसके विकर्णों का गुणनफल)]
यदि बिंदु (1, 2), (4, y), (x, 6) और (3, 5), इसी क्रम में लेने पर, एक समांतर चतुर्भुज के शीर्ष हो तो x और y ज्ञात कीजिए।
बिंदुओं (4, -1) और (-2, -3) को जोड़ने वाले रेखाखंड को सम-त्रिभाजित करने वाले बिंदुओं के निर्देशांक ज्ञात कीजिए।
बिंदुओं (7, –6) और (3, 4) को मिलाने वाले रेखाखंड को आंतरिक रूप से 1 : 2 के अनुपात में विभाजित करने वाला बिंदु निम्नलिखित में स्थित होता ______ है।
बिंदुओं (– 4, – 6) और (–1, 7) को मिलाने वाले रेखाखंड को x-अक्ष किस अनुपात में विभाजित करती है? विभाजन बिंदु के निर्देशांक भी ज्ञात कीजिए।
बिंदुओं A(3, 2) और B(5, 1) को मिलाने वाला रेखाखंड बिंदु P पर 1 : 2 के अनुपात में विभाजित हो जाता है। तथा बिंदु P रेखा 3x – 18y + k = 0 पर स्थित है। k का मान ज्ञात कीजिए।