Advertisements
Advertisements
प्रश्न
नीचे दिए गए उदाहरण में रेखाखंड PQ को a : b के अनुपात में विभाजित करने वाले बिंदु A के निर्देशांक ज्ञात कीजिए।
P(-2, -5), Q(4, 3), a : b = 3 : 4
उत्तर
P(-2, -5) और Q(4, 3).
मानो कि, बिंदु P का निर्देशांक (x1, y1); बिंदु Q का निर्देशांक (x2, y2) और बिंदु A का निर्देशांक (x, y) हो, तो
x1 = -2, y1 = -5, x2 = 4 और y2 = 3.
बिंदु A यह PQ को a : b के अनुपात में विभाजित करता हो, तो a : b = 3 : 4
विभाजन सूत्र से,
`x = (ax_2 + bx_1)/(a + b)`
∴ x = `(3(4) + 4(-2))/(3 + 4)`
∴ x = `(12 - 8)/7`
∴ x = `4/7`
`y = (ay_2 + by_1)/(a + b)`
∴ y = `(3(3) + 4(-5))/(3 + 4)`
∴ y = `(9 - 20)/7`
∴ y = `(-11)/7`
बिंदु A का निर्देशांक `(4/7, (-11)/7)` है |
APPEARS IN
संबंधित प्रश्न
A(3, 8) और B(-9, 3) इन बिंदुओं को जोड़ने वाले रेखाखंड को Y- अक्ष किस अनुपात में विभाजित करता है।
बिंदुओं (−2, 3, 5) और (1, –4, 6) को मिलाने से बने रेखा खंड को अनुपात (i) 2 : 3 में अंतः (ii) 2 : 3 में बाह्यतः विभाजित करने वाले बिंदु के निर्देशांक ज्ञात कीजिए।
विभाजन सूत्र का प्रयोग करके दिखाइए कि बिंदु
A(2, –3, 4), B(−1, 2, 1) तथा C`(0, 1/3, 2)` संरेख हैं।
P(4, 2, –6) और Q(10, –16, 6) के मिलाने वाली रेखा खंड PQ को सम त्रि-भाजित करने वाले बिंदुओं के निर्देशांक ज्ञात कीजिए।
एक समचतुर्भुज का क्षेत्रफल ज्ञात कीजिए जिसके शीर्ष, इसी क्रम में, (3, 0), (4, 5), (-1, 4) और (-2, -1) हैं। [संकेत: समचतुर्भुज का क्षेत्रफल = `1/2` (उसके विकर्णों का गुणनफल)]
यदि बिंदु (1, 2), (4, y), (x, 6) और (3, 5), इसी क्रम में लेने पर, एक समांतर चतुर्भुज के शीर्ष हो तो x और y ज्ञात कीजिए।
उस बिंदु के निर्देशांक ज्ञात कीजिए, जो बिंदुओं (-1, 7) और (4, -3) को मिलाने वाले रेखाखंड को 2 : 3 के अनुपात में विभाजित करता है।
बिंदुओं (4, -1) और (-2, -3) को जोड़ने वाले रेखाखंड को सम-त्रिभाजित करने वाले बिंदुओं के निर्देशांक ज्ञात कीजिए।
बिंदुओं (– 4, – 6) और (–1, 7) को मिलाने वाले रेखाखंड को x-अक्ष किस अनुपात में विभाजित करती है? विभाजन बिंदु के निर्देशांक भी ज्ञात कीजिए।
यदि बिंदु A(4, –3) तथा B(8, 5) हो, तो रेखाखंड AB को 3 : 1 के अनुपात में विभाजित करने वाले बिंदु P का निर्देशांक ज्ञात करने के लिए निम्न कृति पूर्ण करो:
कृति:
x = `(mx_2 + nx_1)/square`
∴ x = `(3 xx 8 + 1 xx 4)/(3 + 1)`
∴ x = `(square + 4)/4`
∴ x = `square`,
y = `square/(m + n)`
∴ y = `(3 xx 5 + 1 xx (-3))/(3 + 1)`
∴ y = `(square - 3)/4`
∴ y = `square`