मराठी
कर्नाटक बोर्ड पी.यू.सी.पीयूसी विज्ञान 2nd PUC Class 12

A 4.5 cm needle is placed 12 cm away from a convex mirror of focal length 15 cm. Give the location of the image and the magnification. - Physics

Advertisements
Advertisements

प्रश्न

A 4.5 cm needle is placed 12 cm away from a convex mirror of focal length 15 cm. Give the location of the image and the magnification. Describe what happens as the needle is moved farther from the mirror.

संख्यात्मक

उत्तर

Height of the needle, h1 = 4.5 cm

Object distance, u = −12 cm

Focal length of the convex mirror, f = 15 cm

Image distance = v

The value of v can be obtained using the mirror formula:

`1/"u" + 1/"v" = 1/"f"`

`1/"v" = 1/"f" - 1/"u"`

`1/"v" = 1/15 - 1/-12`

`1/"v" = 1/15 + 1/12`

`1/"v" = (4 + 5)/60`

`1/"v" = 9/60`

v = `60/9`

∴ v = 6.67 cm

Hence, the image of the needle is 6.67 cm away from the mirror. Also, it is on the other side of the mirror.

The image size is given by the magnification formula:

`"m" = "h"_2/"h"_1 = -"v"/"u"`

∴ `"h"_2 = - "v"/"u" xx "h"_1`

= `-6.67/(-12) xx 4.5`

= + 2.5 cm

The height of the image is 2.5 cm. The positive sign indicates that the image is erect, virtual, and diminished.

If the needle is moved farther from the mirror, the image will also move away from the mirror, and the size of the image will reduce gradually.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 9: Ray Optics and Optical Instruments - Exercise [पृष्ठ ३४४]

APPEARS IN

एनसीईआरटी Physics [English] Class 12
पाठ 9 Ray Optics and Optical Instruments
Exercise | Q 9.2 | पृष्ठ ३४४
एनसीईआरटी Physics [English] Class 12
पाठ 9 Ray Optics and Optical Instruments
Exercise | Q 2 | पृष्ठ ३४५

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

A small candle, 2.5 cm in size is placed at 27 cm in front of a concave mirror of radius of curvature 36 cm. At what distance from the mirror should a screen be placed in order to obtain a sharp image? Describe the nature and size of the image. If the candle is moved closer to the mirror, how would the screen have to be moved?


In motor vehicles, a convex mirror is attached near the driver's seat to give him the view of the traffic behind. What is the special function of this convex mirror which a plane mirror can not do?


Following figure  shows three transparent media of refractive indices \[\mu_1 ,    \mu_2   \text{ and }  \mu_3\].  A point object O is placed in the medium \[\mu_2\].  If the entire medium on the right of the spherical surface has refractive index  \[\mu_3\], the image forms at O". In the situation shown,


A man uses a concave mirror for shaving. He keeps his face at a distance of 25 cm from the mirror and gets an image which is 1.4 times enlarged. Find the focal length of the mirror.


A narrow pencil of parallel light is incident normally on a solid transparent sphere of radius r. What should be the refractive index is the pencil is to be focussed (a) at the surface of the sphere, (b) at the centre of the sphere.


A diverging lens of focal length 20 cm and a converging mirror of focal length 10 cm are placed coaxially at a separation of 5 cm. Where should an object be placed so that a real image is formed at the object itself?


A converging lens and a diverging mirror are placed at a separation of 15 cm. The focal length of the lens is 25 cm and that of the mirror is 40 cm. Where should a point source be placed between the lens and the mirror so that the light, after getting reflected by the mirror and then getting transmitted by the lens, comes out parallel to the principal axis?


How can the spherical aberration produced by a lens be minimized? 


State how the focal length of a glass lens (Refractive Index 1.5) changes when it is completely immersed in: 

(i) Water (Refractive Index 1.33)
(ii) A liquid (Refractive Index 1.65)


Answer the following question.
Three lenses of focal length +10 cm, —10 cm and +30 cm are arranged coaxially as in the figure given below. Find the position of the final image formed by the combination. 


Answer the following question.
With the help of a ray diagram, obtain the relation between its focal length and radius of curvature.


According to the mirror equation, ______.


A thin converging lens of focal length 12 cm is kept in contact with a thin diverging lens of focal length 18 cm. Calculate the effective/equivalent focal length of the combination.


A parallel beam of light ray parallel to the x-axis is incident on a parabolic reflecting surface x = 2by2 as shown in the figure. After reflecting it passes through focal point F. What is the focal length of the reflecting surface?


A car is moving with at a constant speed of 60 km h–1 on a straight road. Looking at the rear view mirror, the driver finds that the car following him is at a distance of 100 m and is approaching with a speed of 5 km h–1. In order to keep track of the car in the rear, the driver begins to glance alternatively at the rear and side mirror of his car after every 2 s till the other car overtakes. If the two cars were maintaining their speeds, which of the following statement (s) is/are correct?


A spherical mirror is obtained as shown in the figure from a hollow glass sphere. if an object is positioned in front of the mirror, what will be the nature and magnification of the image of the object? (Figure drawn as schematic and not to scale)


An object is 20 cm away from a concave mirror and it is within the focal length of the mirror. If the mirror is changed to a plane mirror, the image moves 15 cm closer to the mirror.

Focal length of the concave mirror is ______.


Parallel rays striking a spherical mirror far from the optic axis are focussed at a different point than are rays near the axis thereby the focus moves toward the mirror as the parallel rays move toward the outer edge of the mirror. What value of incidence angle θ produces a 2% change in the location of the focus, compared to the location for θ very close to zero?


A converging lens has a focal length of 10 cm in air. It is made of a material with a refractive index of 1.6. If it is immersed in a liquid of refractive index 1.3, find its new focal length.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×