Advertisements
Advertisements
प्रश्न
a और b के किन मानों के लिए, निम्नलिखित रैखिक समीकरणों के युग्म के अपरिमित रूप से अनेक हल होंगे?
x + 2y = 1
(a – b)x + (a + b)y = a + b – 2
उत्तर
रैखिक समीकरणों का दिया गया युग्म हैं:
x + 2y = 1 ......(i)
(a – b)x + (a + b)y = a + b – 2 ......(ii)
ax + by = c = 0 से तुलना करने पर, हमें मिलता है।
a1 = 1, b1 = 2, c1 = – 1
a2 = (a – b), b2 = (a + b), c2 = – (a + b – 2)
`a_1/a_2 = 1/(a - b)`
`b_1/b_2 = 2/(a + b)`
`c_1/c_2 = 1/(a + b - 2)`
रैखिक समीकरणों के युग्म के अपरिमित रूप से अनेक समाधानों के लिए,
`a_1/a_2 = b_1/b_2 = c_1/c_2` .....(संपाती रेखाएँ)
इसलिए, `1/(a - b) = 2/(a + b) = 1/(a + b - 2)`
पहले दो भागों को लेते हुए,
`1/(a - b) = 2/(a + b)`
a + b = 2(a – b)
a = 3b .......(iii)
अंतिम दो भागों को लेते हुए,
`2/(a + b) = 1/(a + b - 2)`
2(a + b – 2) = (a + b)
a + b = 4 .......(iv)
अब, समीकरण (iii) से a का मान समीकरण (iv) में रखें, हमें मिलता है।
3b + b = 4
4b = 4
b = 1
b का मान समीकरण (iii) में रखें, हमें मिलता है।
a = 3
इसलिए, मान (a, b) = (3, 1) सभी भागों को संतुष्ट करते हैं।
इसलिए, a और b के आवश्यक मान क्रमश 3 और 1 हैं, जिसके लिए दिए गए रैखिक समीकरण युग्म के अनंत रूप से कई समाधान हैं।
APPEARS IN
संबंधित प्रश्न
क्रिकेट टीम के एक कोच ने ₹ 3900 में 3 बल्ले तथा 6 गेंदें खरीदीं। बाद में उसने एक और बल्ला तथा उसी प्रकार की 3 गेंदें ₹ 1300 में खरीदीं। इस स्थिति को बीजगणितीय तथा ज्यामितीय रूपों में व्यक्त कीजिए।
एक आयताकार बाग, जिसकी लंबाई, चौड़ाई से 4 m अधिक है, का अर्धपरिमाप 36 m है। बाग की विमाएँ ज्ञात कीजिए।
अनुपातों `bb(a_1/a_2, b_1/b_2)` और `bb(c_1/c_2)` की तुलना कर ज्ञात कीजिए कि निम्न रैखिक समीकरण के युग्म संगत हैं या असंगत:
3x + 2y = 5; 2x - 3y = 7
अनुपातों `bb(a_1/a_2, b_1/b_2)` और `bb(c_1/c_2)` की तुलना कर ज्ञात कीजिए कि निम्न रैखिक समीकरण के युग्म संगत हैं या असंगत:
2x - 3y = 8; 4x - 6y = 9
निम्न रैखिक समीकरणों के युग्मों में से कौन से युग्म संगत/असंगत हैं, यदि संगत हैं तो ग्राफीय विधि से हल ज्ञात कीजिए।
x - y = 8, 3x - 3y = 16
निम्न रैखिक समीकरणों के युग्मों में से कौन से युग्म संगत/असंगत हैं, यदि संगत हैं तो ग्राफीय विधि से हल ज्ञात कीजिए।
2x + y - 6 = 0, 4x - 2y - 4 = 0
निम्न रैखिक समीकरणों के युग्मों में से कौन से युग्म संगत/असंगत हैं, यदि संगत हैं तो ग्राफीय विधि से हल ज्ञात कीजिए।
2x - 2y - 2 = 0, 4x - 4y - 5 = 0
c के सभी वास्तविक मानों के लिए समीकरण-युग्म x – 2y = 8, 5x – 10y = c का एक अद्वितीय हल हैऔचित्य के साथ उत्तर दीजिए कि यह सत्य है या असत्य।
रेखाओं y = x, 3y = x और x + y = 8 से बनने वाले त्रिभुज के शीर्षों के निर्देशांक आलेखीय विधि से निर्धारित कीजिए।
समीकरण x = 3, x = 5 और 2x – y – 4 = 0 के आलेख खींचिए। इन रेखाओं और x-अक्ष द्वारा बनाए गए चतुर्भुज का क्षेत्रफल ज्ञात कीजिए।