मराठी
कर्नाटक बोर्ड पी.यू.सी.पीयूसी विज्ञान इयत्ता ११

A Ball Kept in a Closed Box Moves in the Box Making Collisions with the Walls. the Box is Kept on a Smooth Surface. the Velocity of the Centre of Mass - Physics

Advertisements
Advertisements

प्रश्न

A ball kept in a closed box moves in the box making collisions with the walls. The box is kept on a smooth surface. The velocity of the centre of mass

पर्याय

  • of the box remains constant

  • of the box plus the ball system remains constant

  • of the ball remains constant

  •  of the ball relative to the box remains constant.

MCQ

उत्तर

of the box plus the ball system remains constant

Consider the box and the ball a system. As no external force acts on this system, the velocity of the centre of mass of the system remains constant.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 9: Centre of Mass, Linear Momentum, Collision - MCQ [पृष्ठ १५८]

APPEARS IN

एचसी वर्मा Concepts of Physics Vol. 1 [English] Class 11 and 12
पाठ 9 Centre of Mass, Linear Momentum, Collision
MCQ | Q 12 | पृष्ठ १५८

संबंधित प्रश्‍न

A child sits stationary at one end of a long trolley moving uniformly with a speed V on a smooth horizontal floor. If the child gets up and runs about on the trolley in any manner, what is the speed of the CM of the (trolley + child) system?


A collision experiment is done on a horizontal table kept in an elevator. Do you expect a change in the result if the elevator is accelerated up or down because of the noninertial character of the frame?


Calculate the velocity of the centre of mass of the system of particles shown in figure.


Two fat astronauts each of mass 120 kg are travelling in a closed  spaceship moving at a speed of 15 km/s in the outer space far removed from all other material objects. The total mass of the spaceship and its contents including the astronauts is 660 kg. If the astronauts do slimming exercise and thereby reduce their masses to 90 kg each, with what velocity will the spaceship move?


During a heavy rain, hailstones of average size 1.0 cm in diameter fall with an average speed of 20 m/s. Suppose 2000 hailstones strike every square meter of a 10 m × 10 m roof perpendicularly in one second and assume that the hailstones do not rebound. Calculate the average force exerted by the falling hailstones on the roof. Density of a hailstone is 900 kg/m3.


A block of mass 2.0 kg moving 2.0 m/s collides head on with another block of equal mass kept at rest. (a) Find the maximum possible loss in kinetic energy due to the collision. (b) If he actual loss in kinetic energy is half of this maximum, find the coefficient of restitution. 


A particle of mass 100 g moving at an initial speed u collides with another particle of same mass kept initially at rest. If the total kinetic energy becomes 0.2 J after the collision, what could be the minimum and the maximum value of u. 


The axis of rotation of a purely rotating body

(a) must pass through the centre of mass

(b) may pass through the centre of mass

(c) must pass through a particle of the body

(d) may pass through a particle of the body.


Consider the situation of the previous problem. Suppose the block of mass m1 is pulled by a constant force F1 and the other block is pulled by a constant force F2. Find the maximum elongation that the spring will suffer.  


Find out the centre of mass for the given geometrical structures.

a) Equilateral triangle

b) Cylinder

c) Square


In system of two particles of masses 'm1' and 'm2', the first particle is moved by a distance 'd' towards the centre of mass. To keep the centre of mass unchanged, the second particle will have to be moved by a distance ______.


Separation of Motion of a system of particles into motion of the centre of mass and motion about the centre of mass:

  1. Show pi = p’+ miV Where pi is the momentum of the ith particle (of mass mi)  and p′ i = mi v′ i. Note v′ i is the velocity of the ith particle relative to the centre of mass. Also, prove using the definition of the centre of mass `sum"p""'"_"t" = 0`
  2. Show K = K′ + 1/2MV2

    where K is the total kinetic energy of the system of particles, K′ is the total kinetic energy of the
    system when the particle velocities are taken with respect to the centre of mass and MV2/2 is the
    kinetic energy of the translation of the system as a whole (i.e. of the centre of mass motion of the
    system). The result has been used in Sec. 7.14.

  3. Show where `"L""'" = sum"r""'"_"t" xx "p""'"_"t"` is the angular momentum of the system about the centre of mass with
    velocities taken relative to the centre of mass. Remember `"r"_"t" = "r"_"t" - "R"`; rest of the notation is the standard notation used in the chapter. Note L′ and MR × V can be said to be angular momenta, respectively, about and of the centre of mass of the system of particles.
  4. Show `"dL"^"'"/"dt" = ∑"r"_"i"^"'" xx "dP"^"'"/"dt"`
    Further show that `"dL"^'/"dt" = τ_"ext"^"'"`
    Where `"τ"_"ext"^"'"` is the sum of all external torques acting on the system about the centre of mass.
    (Hint: Use the definition of centre of mass and third law of motion. Assume the internal forces between any two particles act along the line joining the particles.)

For which of the following does the centre of mass lie outside the body?


Which of the following points is the likely position of the centre of mass of the system shown in figure?


A uniform square plate S (side c) and a uniform rectangular plate R (sides b, a) have identical areas and masses (Figure).


Show that

  1. IxR/IxS < 1
  2. IyR/IyS > 1
  3. IzR/IzS > 1

The mass per unit length of a non-uniform rod of length L varies as m = λx where λ is constant. The centre of mass of the rod will be at ______.


The spheres of masses 2 kg and 4 kg are situated at the opposite ends of wooden bars of length 9 m. Where does the centre of mass of the system will ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×