मराठी

A Bat Emits Ultrasonic Sound of Frequency 1000 Khz in Air. If the Sound Meets a Water Surface, What is the Wavelength of the Transmitted Sound? Speed of Sound in Air is 340 M S–1 and in Water - Physics

Advertisements
Advertisements

प्रश्न

A bat emits an ultrasonic sound of frequency 1000 kHz in the air. If the sound meets a water surface, what is the wavelength of the transmitted sound? The speed of sound in air is 340 m s–1 and in water 1486 m s–1.

संख्यात्मक

उत्तर १

Frequency of the ultrasonic sound, ν = 1000 kHz = 106 Hz

Speed of sound in water, vw = 1486 m/s

The wavelength of the transmitted sound is given as:

`lambda_"t" = 1486/10^6`

= 1.49 × 10–3 m

shaalaa.com

उत्तर २

Here v  = `1000 xx10^3` Hz  = 10^6 Hz, `v_a = 340 ms^(-1)`

`v_w = 1486 ms^(-1)`

Wavelenght of transmitted sound, `lambda_omega`

`= "v"_"w"/"v" = 1486/10^6 "m"`

`= 1.486 xx 10^(-3)` m

shaalaa.com
The Speed of a Travelling Wave
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 15: Waves - Exercises [पृष्ठ ३८७]

APPEARS IN

एनसीईआरटी Physics [English] Class 11
पाठ 15 Waves
Exercises | Q 6.2 | पृष्ठ ३८७

संबंधित प्रश्‍न

A sine wave is travelling in a medium. The minimum distance between the two particles, always having same speed, is


Velocity of sound in air is 332 m s−1. Its velocity in vacuum will be


A sonometer wire of length l vibrates in fundamental mode when excited by a tuning fork of frequency 416. Hz. If the length is doubled keeping other things same, the string will ______.


A travelling wave is produced on a long horizontal string by vibrating an end up and down sinusoidally. The amplitude of vibration is 1⋅0 and the displacement becomes zero 200 times per second. The linear mass density of the string is 0⋅10 kg m−1 and it is kept under a tension of 90 N. (a) Find the speed and the wavelength of the wave. (b) Assume that the wave moves in the positive x-direction and at t = 0, the end x = 0 is at its positive extreme position. Write the wave equation. (c) Find the velocity and acceleration of the particle at x = 50 cm at time t = 10 ms.


Following figure shows two wave pulses at t = 0 travelling on a string in opposite directions with the same wave speed 50 cm s−1. Sketch the shape of the string at t = 4 ms, 6 ms, 8 ms, and 12 ms.


A 40 cm wire having a mass of 3⋅2 g is stretched between two fixed supports 40⋅05 cm apart. In its fundamental mode, the wire vibrates at 220 Hz. If the area of cross section of the wire is 1⋅0 mm2, find its Young modulus.


For the travelling harmonic wave

y (x, t) = 2.0 cos 2π (10t – 0.0080x + 0.35)

Where x and y are in cm and t in s. Calculate the phase difference between oscillatory motion of two points separated by a distance of 4 m.


For the travelling harmonic wave

y (x, t) = 2.0 cos 2π (10t – 0.0080x + 0.35)

Where x and y are in cm and t in s. Calculate the phase difference between oscillatory motion of two points separated by a distance of 0.5 m.


Sound waves of wavelength λ travelling in a medium with a speed of v m/s enter into another medium where its speed is 2v m/s. Wavelength of sound waves in the second medium is ______.


Given below are some functions of x and t to represent the displacement of an elastic wave.

  1. y = 5 cos (4x) sin (20t)
  2. y = 4 sin (5x – t/2) + 3 cos (5x – t/2)
  3. y = 10 cos [(252 – 250) πt] cos [(252 + 250)πt]
  4. y = 100 cos (100πt + 0.5x)

State which of these represent

  1. a travelling wave along –x direction
  2. a stationary wave
  3. beats
  4. a travelling wave along +x direction.

Given reasons for your answers.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×