मराठी
कर्नाटक बोर्ड पी.यू.सी.पीयूसी विज्ञान इयत्ता ११

A Force F is Applied on a Block of Mass M. the Block is Displaced Through a Distance D in the Direction of the Force. What is the Work Done by the Force on the Block? - Physics

Advertisements
Advertisements

प्रश्न

A force F is applied on a block of mass M. The block is displaced through a distance d in the direction of the force. What is the work done by the force on the block? Does the internal energy change because of this work?

टीपा लिहा

उत्तर

If force F is applied on a block of mass M and displacement of block is d, then work done by the force is given by

W = F.d = Fd cos(0°) = Fd

This work done does not change the internal energy of the block as the internal energy does not include the energy due to motion or location of the system as a whole.

shaalaa.com
Heat, Internal Energy and Work
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 4: Laws of Thermodynamics - Short Answers [पृष्ठ ६०]

APPEARS IN

एचसी वर्मा Concepts of Physics Vol. 2 [English] Class 11 and 12
पाठ 4 Laws of Thermodynamics
Short Answers | Q 4 | पृष्ठ ६०

संबंधित प्रश्‍न

Two cylinders A and B of equal capacity are connected to each other via a stopcock. A contains a gas at standard temperature and pressure. B is completely evacuated. The entire system is thermally insulated. The stopcock is suddenly opened. Answer the following:

Do the intermediate states of the system (before settling to the final equilibrium state) lie on its P-V-T surface?


A cylinder containing a gas is lifted from the first floor to the second floor. What is the amount of work done on the gas? What is the amount of work done by the gas? Is the internal energy of the gas increased? Is the temperature of the gas increased?


Consider the following two statements.

(A) If heat is added to a system, its temperature must increase.

(B) If positive work is done by a system in a thermodynamic process, its volume must increase.


Consider two processes on a system as shown in figure.

The volumes in the initial states are the same in the two processes and the volumes in the final states are also the same. Let ∆W1 and ∆W2 be the work done by the system in the processes A and B respectively.


A substance is taken through the process abc as shown in figure. If the internal energy of the substance increases by 5000 J and a heat of 2625 cal is given to the system, calculate the value of J.


A system releases 130 kJ of heat while 109 kJ of work is done on the system. Calculate the change in internal energy.


Which of the following is correct, when the energy is transferred to a system from its environment?


Define heat.


What is the internal energy of the system, when the amount of heat Q is added to the system and the system does not do any work during the process?


A system releases 100 kJ of heat while 80 kJ of work is done on the system. Calculate the change in internal energy.


derive the relation between the change in internal energy (∆U), work is done (W), and heat (Q). 


In a thermodynamic system, working substance is ideal gas. Its internal energy is in the form of ______.


When 1 g of water at 0° C and 1 x 105 N/m2 pressure is converted into ice of volume 1.082 cm3, the external work done will be ____________.


Which of the following represents isothermal process?


If a gas is compressed adiabatically:


The internal energy of one mole of argon at 300 K is ______. (R = 8.314 J/mol.K)


What is heat?


A system releases 125 kJ of heat while 104 kJ work is done on the system. Calculate the change in internal energy.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×