मराठी
कर्नाटक बोर्ड पी.यू.सी.पीयूसी विज्ञान इयत्ता ११

A Cylinder Containing a Gas is Lifted from the First Floor to the Second Floor. What is the Amount of Work Done on the Gas? What is the Amount of Work Done by the Gas? - Physics

Advertisements
Advertisements

प्रश्न

A cylinder containing a gas is lifted from the first floor to the second floor. What is the amount of work done on the gas? What is the amount of work done by the gas? Is the internal energy of the gas increased? Is the temperature of the gas increased?

टीपा लिहा

उत्तर

As a cylinder is lifted from the first floor to the second floor, there is decrease in the atmospheric pressure on the gas and it expands. Therefore, some work is done by the gas on its surroundings. Work done on the gas is zero.

Work done by the gas, W = PΔV (positive)

The increase in the internal energy and temperature of the system will depend on the types of the walls of the system (conducting or insulating).

shaalaa.com
Heat, Internal Energy and Work
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 4: Laws of Thermodynamics - Short Answers [पृष्ठ ६०]

APPEARS IN

एचसी वर्मा Concepts of Physics Vol. 2 [English] Class 11 and 12
पाठ 4 Laws of Thermodynamics
Short Answers | Q 3 | पृष्ठ ६०

संबंधित प्रश्‍न

Explain why Air pressure in a car tyre increases during driving.


A steam engine delivers 5.4×10J of work per minute and services 3.6 × 10J of heat per minute from its boiler. What is the efficiency of the engine? How much heat is wasted per minute?


Figure shows two processes A and B on a system. Let ∆Q1 and ∆Q2 be the heat given to the system in processes A and B respectively. Then ____________ .


Consider the following two statements.

(A) If heat is added to a system, its temperature must increase.

(B) If positive work is done by a system in a thermodynamic process, its volume must increase.


Figure shows three paths through which a gas can be taken from the state A to the state B. Calculate the work done by the gas in each of the three paths.


Which of the following system freely allows the exchange of energy and matter with its environment? 


What is the energy associated with the random, disordered motion of the molecules of a system called as?


When does a system lose energy to its surroundings and its internal energy decreases? 


A system releases 100 kJ of heat while 80 kJ of work is done on the system. Calculate the change in internal energy.


A cylinder containing one gram molecule of the gas was compressed adiabatically until its temperature rose from 27°C to 97°C. Calculate the work done and heat produced in the gas (𝛾 = 1.5).


The internal energy of a system is ______


8 m3 of a gas is heated at the pressure 105 N/m2 until its volume increases by 10%. Then, the external work done by the gas is ____________.


Two samples A and B, of a gas at the same initial temperature and pressure are compressed from volume V to V/2; A isothermally and B adiabatically. The final pressure of A will be ______.


Figure shows the P-V diagram of an ideal gas undergoing a change of state from A to B. Four different parts I, II, III and IV as shown in the figure may lead to the same change of state.

  1. Change in internal energy is same in IV and III cases, but not in I and II.
  2. Change in internal energy is same in all the four cases.
  3. Work done is maximum in case I
  4. Work done is minimum in case II.

A person of mass 60 kg wants to lose 5kg by going up and down a 10 m high stairs. Assume he burns twice as much fat while going up than coming down. If 1 kg of fat is burnt on expending 7000 kilo calories, how many times must he go up and down to reduce his weight by 5 kg?


In thermodynamics, heat and work are ______.


An expansion process on a diatomic ideal gas (Cv = 5/2 R), has a linear path between the initial and final coordinates on a pV diagram. The coordinates of the initial state are: the pressure is 300 kPa, the volume is 0.08 m3 and the temperature is 390 K. The final pressure is 90 kPa and the final temperature s 320 K. The change in the internal energy of the gas, in SI units, is closest to:


If a gas is compressed adiabatically:


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×