मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी विज्ञान (सामान्य) इयत्ता १२ वी

What is the internal energy of the system, when the amount of heat Q is added to the system and the system does not do any work during the process? - Physics

Advertisements
Advertisements

प्रश्न

What is the internal energy of the system, when the amount of heat Q is added to the system and the system does not do any work during the process?

एका वाक्यात उत्तर

उत्तर

The first law of thermodynamics is one of the most useful equations when dealing with internal energy, and it states that the change in internal energy of a system equals the heat added to the system minus the work done by the system.

∆U = Q − W

shaalaa.com
Heat, Internal Energy and Work
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 4: Thermodynamics - Very Short Answer

संबंधित प्रश्‍न

Explain why Air pressure in a car tyre increases during driving.


Should the internal energy of a system necessarily increase if heat is added to it?


A force F is applied on a block of mass M. The block is displaced through a distance d in the direction of the force. What is the work done by the force on the block? Does the internal energy change because of this work?


Can work be done by a system without changing its volume?


An ideal gas is pumped into a rigid container having diathermic walls so that the temperature remains constant. In a certain time interval, the pressure in the container is doubled. Is the internal energy of the contents of the container also doubled in the interval ?


Refer to figure. Let ∆U1 and ∆U2 be the changes in internal energy of the system in the process A and B. Then _____________ .


An ideal gas goes from the state i to the state f as shown in figure. The work done by the gas during the process ______________ .


A gas is contained in a metallic cylinder fitted with a piston. The piston is suddenly moved in to compress the gas and is maintained at this position. As time passes the pressure of the gas in the cylinder ______________ .


The pressure p and volume V of an ideal gas both increase in a process.

(a) Such a process is not possible.

(b) The work done by the system is positive.

(c) The temperature of the system must increase.

(d) Heat supplied to the gas is equal to the change in internal energy.


In a process on a system, the initial pressure and volume are equal to the final pressure and volume.

(a) The initial temperature must be equal to the final temperature.

(b) The initial internal energy must be equal to the final internal energy.

(c) The net heat given to the system in the process must be zero.

(d) The net work done by the system in the process must be zero.


A 100 kg lock is started with a speed of 2.0 m s−1 on a long, rough belt kept fixed in a horizontal position. The coefficient of kinetic friction between the block and the belt is 0.20. (a) Calculate the change in the internal energy of the block-belt system as the block comes to a stop on the belt. (b) Consider the situation from a frame of reference moving at 2.0 m s−1 along the initial velocity of the block. As seen from this frame, the block is gently put on a moving belt and in due time the block starts moving with the belt at 2.0 m s−1. calculate the increase in the kinetic energy of the block as it stops slipping  past the belt. (c) Find the work done in this frame by the external force holding the belt.


Figure shows three paths through which a gas can be taken from the state A to the state B. Calculate the work done by the gas in each of the three paths.


A gas is taken through a cyclic process ABCA as shown in figure. If 2.4 cal of heat is given in the process, what is the value of J ?


A system releases 130 kJ of heat while 109 kJ of work is done on the system. Calculate the change in internal energy.


Which of the following is correct, when the energy is transferred to a system from its environment?


Which of the following system freely allows the exchange of energy and matter with its environment? 


What is the energy associated with the random, disordered motion of the molecules of a system called as?


When does a system lose energy to its surroundings and its internal energy decreases? 


An ideal gas is compressed at a constant temperature. Its internal energy will ____________.


When 1 g of water at 0° C and 1 x 105 N/m2 pressure is converted into ice of volume 1.082 cm3, the external work done will be ____________.


Two cylinders A and B of equal capacity are connected to each other via a stopcock. A contains a gas at standard temperature and pressure. B is completely evacuated. The entire system is thermally insulated. The stopcock is suddenly opened. Answer the following:

What is the change in the temperature of the gas?


n mole of a perfect gas undergoes a cyclic process ABCA (see figure) consisting of the following processes:

A `→` B: Isothermal expansion at temperature T so that the volume is doubled from V1 to V2 = 2V1 and pressure changes from P1 to P2.

B `→` C: Isobaric compression at pressure P2 to initial volume V1.

C `→` A: Isochoric change leading to change of pressure from P2 to P1.

Total workdone in the complete cycle ABCA is ______.


If a gas is compressed adiabatically:


The internal energy of one mole of argon at 300 K is ______. (R = 8.314 J/mol.K)


The molar specific heat of He at constant volume is 12.47 J/mol.K. Two moles of He are heated at constant pressure. So the rise in temperature is 10 K. Find the increase in internal energy of the gas.


A steam engine delivers 4.8 x 108 Jof work per minute and services 1.2 x 109 J of heat per minute from its boiler. What is the percentage efficiency of the engine?


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×