मराठी
कर्नाटक बोर्ड पी.यू.सी.पीयूसी विज्ञान इयत्ता ११

A Person is Standing on a Truck Moving with a Constant Velocity of 14.7 M/S on a Horizontal Road. the Man Throws a Ball in Such a Way that It Returns to the Truck After the Truck Has Moved 58.8 M. - Physics

Advertisements
Advertisements

प्रश्न

A person is standing on a truck moving with a constant velocity of 14.7 m/s on a horizontal road. The man throws a ball in such a way that it returns to the truck after the truck has moved 58.8 m. Find the speed and the angle of projection as seen from the truck .

टीपा लिहा

उत्तर

Given:
Velocity of the truck = 14.7 m/s
Distance covered by the truck when the ball returns again to the truck = 58.8 m

Therefore, we can say that the time taken by the truck to cover 58.8 m distance is equal to the time of the flight of the truck.
Time in which the truck has moved the distance of 58.8 m:

\[\text{ Time }(T) = \frac{s}{v} = \frac{58 . 8}{14 . 7} = 4 s\]
We consider the motion of the ball going upwards.
T = 4 s
Time taken to reach the maximum height when the final velocity v = 0:
\[t = \frac{T}{2} = \frac{4}{2} = 2 s\] 
a = g = −9.8 m/s2 (Acceleration due to gravity)
∴ v = u − at
⇒ 0 = u + 9.8 × 2
⇒ u = 19.6 m/s           
19.6 m/s is the initial velocity with which the ball is thrown upwards. 

 

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 3: Rest and Motion: Kinematics - Exercise [पृष्ठ ५३]

APPEARS IN

एचसी वर्मा Concepts of Physics Vol. 1 [English] Class 11 and 12
पाठ 3 Rest and Motion: Kinematics
Exercise | Q 43.1 | पृष्ठ ५३

संबंधित प्रश्‍न

Two trains A and B of length 400 m each are moving on two parallel tracks with a uniform speed of 72 km h–1 in the same direction, with A ahead of B. The driver of B decides to overtake A and accelerates by 1 m/s2. If after 50 s, the guard of B just brushes past the driver of A, what was the original distance between them?


A ball is dropped from a height of 90 m on a floor. At each collision with the floor, the ball loses one tenth of its speed. Plot the speed-time graph of its motion between t = 0 to 12 s.


The following figure gives the x-t plot of a particle executing one-dimensional simple harmonic motion. Give the signs of position, velocity and acceleration variables of the particle at t = 0.3 s, 1.2 s, – 1.2 s.


The velocity of a particle is towards west at an instant. Its acceleration is not towards west, not towards east, not towards north and towards south. Give an example of this type of motion .


At which point on its path a projectile has the smallest speed?


A train starts from rest and moves with a constant acceleration of 2.0 m/s2 for half a minute. The brakes are then applied and the train comes to rest in one minute. Find the position(s) of the train at half the maximum speed.


A particle starting from rest moves with constant acceleration. If it takes 5.0 s to reach the speed 18.0 km/h find the average velocity during this period .


Complete the following table:

Car Model Driver X
Reaction time 0.20 s
Driver Y
Reaction time 0.30 s
A (deceleration on hard braking = 6.0 m/s2) Speed = 54 km/h
Braking distance
a = ............
Total stopping distance
b = ............
Speed = 72 km/h
Braking distance
= ...........
Total stopping distance
d = ............
B (deceleration on hard braking = 7.5 m/s2) Speed = 54 km/h
Breaking distance
e = ...........
Total stopping distance
f = ............
Speed 72 km/h
Braking distance
g = .............
Total stopping distance
h = ............

 


A car travelling at 60 km/h overtakes another car travelling at 42 km/h. Assuming each car to be 5.0 m long, find the time taken during the overtake and the total road distance used for the overtake.


A stone is thrown vertically upward with a speed of 28 m/s. change if the initial speed is more than 28 m/s such as 40 m/s or 80 m/s ?


A healthy youngman standing at a distance of 7 m from a 11.8 m high building sees a kid slipping from the top floor. With what speed (assumed uniform) should he run to catch the kid at the arms height (1.8 m)?


A ball is dropped from a height. If it takes 0.200 s to cross the last 6.00 m before hitting the ground, find the height from which it was dropped. Take g = 10 m/s2.

 

A ball is thrown horizontally from a point 100 m above the ground with a speed of 20 m/s. Find the time it takes to reach the ground .


A river 400 m wide is flowing at a rate of 2.0 m/s. A boat is sailing at a velocity of 10 m/s with respect to the water, in a direction perpendicular to the river. How far from the point directly opposite to the starting point does the boat reach the opposite bank?


A swimmer wishes to cross a 500 m wide river flowing at 5 km/h. His speed with respect to water is 3 km/h.  Find the shortest possible time to cross the river.


An aeroplane has to go from a point A to another point B, 500 km away due 30° east of north. A wind is blowing due north at a speed of 20 m/s. The air-speed of the plane is 150 m/s. Find the direction in which the pilot should head the plane to reach the point B.   


Six particles situated at the corner of a regular hexagon of side a move at a constant speed v. Each particle maintains a direction towards the particle at the next corner. Calculate the time the particles will take to meet each other.  


A ball is dropped from a building of height 45 m. Simultaneously another ball is thrown up with a speed 40 m/s. Calculate the relative speed of the balls as a function of time.


A man is standing on top of a building 100 m high. He throws two balls vertically, one at t = 0 and other after a time interval (less than 2 seconds). The later ball is thrown at a velocity of half the first. The vertical gap between first and second ball is +15 m at t = 2 s. The gap is found to remain constant. Calculate the velocity with which the balls were thrown and the exact time interval between their throw.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×