मराठी

A Rope of Negligible Mass is Wound Round a Hollow Cylinder of Mass 3 Kg and Radius 40 Cm. What is the Angular Acceleration of the Cylinder If the Rope is Pulled with a Force of 30 N? What is the Linear Acceleration of the Rope? Assume that There is No Slipping. - Physics

Advertisements
Advertisements

प्रश्न

A rope of negligible mass is wound round a hollow cylinder of mass 3 kg and radius 40 cm. What is the angular acceleration of the cylinder if the rope is pulled with a force of 30 N? What is the linear acceleration of the rope? Assume that there is no slipping.

उत्तर

Mass of the hollow cylinder, m = 3 kg

Radius of the hollow cylinder, r = 40 cm = 0.4 m

Applied force, F = 30 N

The moment of inertia of the hollow cylinder about its geometric axis:

I = mr2

= 3 × (0.4)2 = 0.48 kg m2

Torque, t = F x r

= 30 × 0.4 = 12 Nm

For angular acceleration `alpha`, torque is also given by the relation:

`t = Ialpha`

`alpha = t/I = 12/0.48`

`= 25 " rad s"^(-2)`

Linear acceleration = `ralpha  = 0.4 xx 25 = 10 ms^(-2)`

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 7: System of Particles and Rotational Motion - Exercises [पृष्ठ १७९]

APPEARS IN

एनसीईआरटी Physics [English] Class 11
पाठ 7 System of Particles and Rotational Motion
Exercises | Q 14 | पृष्ठ १७९

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Find the moment of inertia of a sphere about a tangent to the sphere, given the moment of inertia of the sphere about any of its diameters to be 2MR2/5, where is the mass of the sphere and is the radius of the sphere.


A string is wrapped on a wheel of moment of inertia 0⋅20 kg-m2 and radius 10 cm and goes through a light pulley to support a block of mass 2⋅0 kg as shown in the following figure. Find the acceleration of the block.


Solve the previous problem if the friction coefficient between the 2⋅0 kg block and the plane below it is 0⋅5 and the plane below the 4⋅0 kg block is frictionless.


A wheel of moment of inertia 0⋅500 kg-m2 and radius 20⋅0 cm is rotating about its axis at an angular speed of 20⋅0 rad/s. It picks up a stationary particle of mass 200 g at its edge. Find the new angular speed of the wheel.


A boy is seated in a revolving chair revolving at an angular speed of 120 revolutions per minute. Two heavy balls form part of the revolving system and the boy can pull the balls closer to himself or may push them apart. If by pulling the balls closer, the boy decreases the moment of inertia of the system from 6 kg-m2 to 2 kg-m2, what will be the new angular speed?


A wheel of moment of inertia 0⋅10 kg-m2 is rotating about a shaft at an angular speed of 160 rev/minute. A second wheel is set into rotation at 300 rev/minute and is coupled to the same shaft so that both the wheels finally rotate with a common angular speed of 200 rev/minute. Find the moment of inertia of the second wheel.


From a circular ring of mass, ‘M’ and radius ‘R’ an arc corresponding to a 90° sector is removed. The moment of inertia of the remaining part of the ring about an axis passing through the centre of the ring and perpendicular to the plane of the ring is ‘K’ times ‘MR2’. Then the value of ‘K’ is ______.


From a circular ring of mass ‘M’ and radius ‘R’ an arc corresponding to a 90° sector is removed. The moment of inertia of the remaining part of the ring about an axis passing through the centre of the ring and perpendicular to the plane of the ring is ‘K’ times ‘MR2’. Then the value of ‘K’ is ______.


From a circular ring of mass ‘M’ and radius ‘R’ an arc corresponding to a 90° sector is removed. The moment of inertia of the remaining part of the ring about an axis passing  through the centre of the ring and perpendicular to the plane of the ring is ‘K’ times ‘MR2 ’. Then the value of ‘K’ is ______.


Moment of inertia (M.I.) of four bodies, having same mass and radius, are reported as :

I1 = M.I. of thin circular ring about its diameter,

I2 = M.I. of circular disc about an axis perpendicular to disc and going through the centre,

I3 = M.I. of solid cylinder about its axis and

I4 = M.I. of solid sphere about its diameter.

Then -


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×