Advertisements
Advertisements
प्रश्न
आकृति में D त्रिभुज ABC के कर्ण AC पर स्थित एक बिंदु है जबकि BD ⊥ AC तथा DM ⊥ BC और DN ⊥ AB है। सिद्ध कीजिए कि
(i) DM2 = DN.MC
(ii) DN2 = DM.AN
उत्तर
चूँकि DMBN एक आयत है
[∠M = ∠B = ∠N = 90° दिया है]
⇒ DM = BN एवं DN = MB
(i) ∵ समकोण ∆BDC के समकोण वाले शीर्ष D से DM ⊥ CB खींचा गया है।
⇒ ∆DMC ∼ ∆BMD [प्रमेय : 6.7 से]
⇒ `"DM"/"MB" = "MC"/"DM"` [समरूप त्रिभुजों के प्रगुण]
⇒ DM2 = MB.MC
⇒ DM2 = DN.MC [∵ DN = MB समीकरण (1) से]
इति सिद्धम्
(ii) समकोण ∆ADB से समकोण वाले शीर्ष D से DN ⊥ AB खींचा गया है।
⇒ ∆DNB ∼ ∆AND [प्रमेय : 6.7 से]
⇒ `"DN"/"AN" = "BN"/"DN"` [समरूप त्रिभुजों के प्रगुण से]
⇒ DN2 = BN.AN
⇒ DN2 = DM.AN [∵ BN = DM समीकरण (1) से]
इति सिद्धम्
APPEARS IN
संबंधित प्रश्न
मान लीजिए ∆ABC ∼ ∆DEF है और इनके क्षेत्रफल क्रमश: 64 cm2 और 121 cm2 हैं। यदि EF = 15.4 cm हो, तो BC ज्ञात कीजिए।
एक समलंब ABCD जिसमें AB || DC है, के विकर्ण परस्पर बिंदु O पर प्रतिच्छेद करते हैं। यदि AB = 2CD हो तो त्रिभुजों AOB और COD के क्षेत्रफलों का अनुपात ज्ञात कीजिए।
आकृति में एक ही आधार BC पर दो त्रिभुज ABC और DBC बने हुए हैं। यदि AD, BC को O पर प्रतिच्छेद करे, तो दर्शाइए कि `("ar"("ABC"))/("ar"("DBC")) = "AO"/"DO"` हैं।
यदि दो समरूप त्रिभुजों के क्षेत्रफल बराबर हों तो सिद्ध कीजिए कि वे त्रिभुज सर्वांगसम होते हैं।
एक त्रिभुज ABC की भुजाओं AB, BC और CA के मध्य-बिंदु क्रमश: D, E और F हैं। ∆DEF और ∆ABC के क्षेत्रफलों का अनुपात ज्ञात कीजिए।
ABC और BDE दो समबाहु त्रिभुज इस प्रकार हैं कि D भुजा BC का मध्य-बिंदु है। त्रिभुजों ABC और BDE के क्षेत्रफलों का अनुपात है: ______
दो समरूप त्रिभुजों की भुजाएँ 4 : 9 के अनुपात में हैं। इन त्रिभुजों के क्षेत्रफलों का अनुपात है: _____
सिद्ध कीजिए कि एक वर्ग की किसी भुजा पर बनाए गए समबाहु त्रिभुज का क्षेत्रफल उसी वर्ग के एक विकर्ण पर बनाए गए समबाहु त्रिभुज के क्षेत्रफल का आधा होता है।
सिद्ध कीजिए कि दो समरूप त्रिभुजों के क्षेत्रफलों का अनुपात इनकी संगत माध्यिकाओं के अनुपात का वर्ग होता है।
PQR एक समकोण त्रिभुज है जिसका कोण P समकोण है तथा QR पर बिंदु M इस प्रकार स्थित है कि PM ⊥ QR है। दर्शाइए कि PM² = QM.MR है।