मराठी

An alternating current generator has an internal resistance Rg and an internal reactance Xg. It is used to supply power to a passive load consisting of a resistance Rg and a reactance XL. - Physics

Advertisements
Advertisements

प्रश्न

An alternating current generator has an internal resistance Rg and an internal reactance Xg. It is used to supply power to a passive load consisting of a resistance Rg and a reactance XL. For maximum power to be delivered from the generator to the load, the value of XL is equal to ______.

पर्याय

  • zero

  • Xg

  • – Xg

  • Rg

MCQ
रिकाम्या जागा भरा

उत्तर

An alternating current generator has an internal resistance Rg and an internal reactance Xg. It is used to supply power to a passive load consisting of a resistance Rg and a reactance XL. For maximum power to be delivered from the generator to the load, the value of XL is equal to `underline(- X_g)`.

Explanation:

For maximum power to be delivered from the generator (or internal reactance Xg) to the load (of reactance, XL),

⇒ XL + Xg = 0  .....(The total reactance must vanish)

⇒ XL= – Xg

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 7: Alternating Current - MCQ I [पृष्ठ ४०]

APPEARS IN

एनसीईआरटी एक्झांप्लर Physics [English] Class 12
पाठ 7 Alternating Current
MCQ I | Q 7.02 | पृष्ठ ४०

व्हिडिओ ट्यूटोरियलVIEW ALL [3]

संबंधित प्रश्‍न

An a.c. source of voltage V = V0 sin ωt is connected to a series combination of L, C, and R. Use the phasor diagram to obtain the expression for an impedance of a circuit and the phase angle between voltage and current. Find the condition when current will be in phase with the voltage. What is the circuit in this condition called?


Ajit had a high tension tower erected on his farm land. He kept complaining to the authorities to remove it as it was occupying a large portion of his land. His uncle, who was a teacher, explained to him the need for erecting these towers for efficient transmission of power. As Ajit realised its significance, he stopped complaining.

Answer the following questions:

(a) Why is it necessary to transport power at high voltage?

(b) A low power factor implies large power loss. Explain.

(c) Write two values each displayed by Ajit and his uncle.


An A.C. generator generating an emf of ε = 300 sin (100 πt) V is connected to a series combination of 16μ F capacitor, 1 H inductor and 100 Ω resistor.

Calculate :

1) An impedance of the circuit at the given frequency.

2) Resonant frequency `f_0`

3)Power factor at the resonant frequency `f_0`.


Transformers are used ______.


An AC source rated 100 V (rms) supplies a current of 10 A (rms) to a circuit. The average power delivered by the source
(a) must be 1000 W
(b) may be 1000 W
(c) may be greater than 1000 W
(d) may be less than 1000 W


In a series LCR circuit with an AC source, R = 300 Ω, C = 20 μF, L = 1.0 henry, εrms = 50 V and ν = 50/π Hz. Find (a) the rms current in the circuit and (b) the rms potential difference across the capacitor, the resistor and the inductor. Note that the sum of the rms potential differences across the three elements is greater than the rms voltage of the source.


In previous questions 3 and 4, what is the net power absorbed by each circuit over a complete cycle. Explain your answer.


Power factor of the A. C. circuit varies between ______.

In an AC. circuit, the current is :

i = `5 sin (100t - pi/2)` amp.

and the a.c. potentiol is:

V = 200 sin (100t) volt.

Then the power consumption is


An inductor of reactance 1 Ω and a resistor of 2 Ω are connected in series to the terminals of a 6 V (rms) a.c. source. The power dissipated in the circuit is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×