मराठी
कर्नाटक बोर्ड पी.यू.सी.पीयूसी विज्ञान इयत्ता ११

An Electric Kettle Used to Prepare Tea, Takes 2 Minutes to Boil 4 Cups of Water (1 Cup Contains 200 Cc of Water) If the Room Temperature is 25°C. - Physics

Advertisements
Advertisements

प्रश्न

An electric kettle used to prepare tea, takes 2 minutes to boil 4 cups of water (1 cup contains 200 cc of water) if the room temperature is 25°C. (a) If the cost of power consumption is Re 1.00 per unit (1 unit = 1000 watt-hour), calculate the cost of boiling 4 cups of water. (b) What will be the corresponding cost if the room temperature drops to 5°C?

बेरीज

उत्तर

Time taken to boil 4 cups of water, t = 2 minutes

Volume of water boiled = 4 × 200 cc = 800 cc

Initial temperature, θ1 = 25°C

Final temperature, θ2 = 100°C

Change in temperature, θ =  θ2 − θ1 = 75°C

Mass of water to be boiled, m = 800 × 1 = 800 gm = 0.8 Kg

Heat required for boiling water,

Q = msθ = 0.8 × 4200 × 75 = 252000 J


We know:-

1000 watt - hour = 1000 × 3600 watt sec.

∴ Cost of boiling 4 cups of water

\[= \frac{1}{1000 \times 3600} \times 252000\]

= Rs. 0.7


(b) Initial temperature, θ1 = 5°C

Final temperature, θ2 = 100°C

Change in temperature, θ =  θ2 − θ1 = 95°C

Q = msθ = 0.8 × 4200 × 95 = 319200

∴ Cost of boiling 4 cups of water

\[= \frac{1}{1000 \times 3600} \times 319200\]

= Rs. 0.09

shaalaa.com
Temperature Dependence of Resistance
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 11: Thermal and Chemical Effects of Current - Exercises [पृष्ठ २१९]

APPEARS IN

एचसी वर्मा Concepts of Physics Vol. 2 [English] Class 11 and 12
पाठ 11 Thermal and Chemical Effects of Current
Exercises | Q 10 | पृष्ठ २१९

संबंधित प्रश्‍न

A silver wire has a resistance of 2.1 Ω at 27.5°C, and a resistance of 2.7 Ω at 100°C. Determine the temperature coefficient of resistivity of silver.


The order of coloured rings in a carbon resistor is red, yellow, blue and silver. The resistance of the
carbon resistor is:

a) 24 x 106 Ω ± 5%

b) 24 x 106 Ω ± 10%

c) 34 x 104 Ω ± 10%

d) 26 x 104 Ω ± 5%


Consider a circuit containing an ideal battery connected to a resistor. Do "work done by the battery" and "the thermal energy developed" represent two names of the same physical quantity?


Sometimes it is said that "heat is developed" in a resistance when there is an electric current in it. Recall that heat is defined as the energy being transferred due to temperature difference. Is the statement in quotes technically correct?


The resistance of an iron wire and a copper wire at 20°C are 3.9 Ω and 4.1 Ω, respectively. At what temperature will the resistance be equal? Temperature coefficient of resistivity for iron is 5.0 × 10–3 K–1 and for copper, it  is 4.0 × 10–3 K–1. Neglect any thermal expansion.


Is inversion temperature always double the neutral temperature? Does the unit of temperature have an effect in deciding this question?


As temperature increases, the viscosity of liquids decreases considerably. Will this decrease the resistance of an electrolyte as the temperature increases?


Consider the following statements regarding a thermocouple.
(A) The neutral temperature does not depend on the temperature of the cold junction.
(B) The inversion temperature does not depend on the temperature of the cold junction.


The constants a and b for the pair silver-lead are 2.50 μV°C−1 and 0.012μV°C−2, respectively. For a silver-lead thermocouple with colder junction at 0°C, ______________ .

(a) there will be no neutral temperature
(b) there will be no inversion temperature
(c) there will not be any thermo-emf even if the junctions are kept at different temperatures
(d) there will be no current in the thermocouple even if the junctions are kept at different temperatures


The 2.0 Ω resistor shown in the figure is dipped into a calorimeter containing water. The heat capacity of the calorimeter together with water is 2000 J K−1. (a) If the circuit is active for 15 minutes, what would be the rise in the temperature of the water? (b) Suppose the 6.0 Ω resistor gets burnt. What would be the rise in the temperature of the water in the next 15 minutes?


Find the neutral temperature and inversion temperature of a copper-iron thermocouple if the reference junction is kept at 0°C. Use the data given in the following table.

Metal with lead (Pb)

a

`mu V"/"^oC`

b

`muV"/("^oC)`

Aluminium -0.47 0.003
Bismuth -43.7 -0.47
Copper 2.76 0.012
Gold 2.90 0.0093
Iron 16.6 -0.030
Nickel 19.1 -0.030
Platinum -1.79 -0.035
Silver 2.50 0.012
Steel 10.8 -0.016

A carbon resistor has coloured bands as shown in Figure 2 below. The resistance of the resistor is: 

figure 2


A metallic wire has a resistance of 3.0 Ω at 0°C and 4.8 Ω at 150°C. Find the temperature coefficient of resistance of its material.


By increasing the temperature, the specific resistance of a conductor and a semiconductor -


The higher and lower fixed points on a thermometer are separated by 160 mm. When the length of the mercury thread above the lower point is 40 mm, the temperature reading would be :


Temperature dependence of resistivity ρ(T) of semiconductors, insulators and metals is significantly based on the following factors:

  1. number of charge carriers can change with temperature T.
  2. time interval between two successive collisions can depend on T.
  3. length of material can be a function of T.
  4. mass of carriers is a function of T.

The temperature (T) dependence of resistivity of materials A and material B is represented by fig (i) and fig (ii) respectively. Identify material A and material B.


fig. (i)

fig. (ii)

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×