मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी विज्ञान (सामान्य) इयत्ता ११ वी

Answer the following question: Find x, y if, [0-14]{2[45362-1]+3[43140-1]}=[xy] - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Answer the following question:

Find x, y if, `[(0, -1, 4)]{2[(4, 5),(3, 6),(2, -1)] + 3[(4, 3),(1, 4),(0, -1)]} = [(x, y)]`

बेरीज

उत्तर

`[(0, -1, 4)]{2[(4, 5),(3, 6),(2, -1)] + 3[(4, 3),(1, 4),(0, -1)]} = [(x, y)]`

∴ `[(0, -1, 4)] {[(8, 10),(6, 12),(4, -2)] + [(12, 9),(3, 12),(0, -3)]} = [(x, y)]`

∴ `[(0, -1, 4)] [(20, 19),(9, 24),(4, -5)] = [(x, y)]`

∴ `[(0  – 9 + 16, 0  – 24  – 20)] = [(x, y)]`

∴ [(7 −44)] = [(x, y)]

∴ by the equality of matrices, x = 7, y = – 44.

shaalaa.com
Matrices - Properties of Matrix Multiplication
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 4: Determinants and Matrices - Miscellaneous Exercise 4(B) [पृष्ठ १०२]

APPEARS IN

बालभारती Mathematics and Statistics 1 (Arts and Science) [English] 11 Standard Maharashtra State Board
पाठ 4 Determinants and Matrices
Miscellaneous Exercise 4(B) | Q II. (19) (i) | पृष्ठ १०२

संबंधित प्रश्‍न

If A = `[(1, -3),(4, 2)], "B" = [(4, 1),(3, -2)]` show that AB ≠ BA.


If A = `[(-1, 1, 1),(2, 3, 0),(1, -3, 1)], "B" = [(2, 1, 4),(3, 0, 2),(1, 2, 1)]`. State whether AB = BA? Justify your answer.


Show that AB = BA where,

A = `[(-2, 3, -1),(-1, 2, -1),(-6, 9, -4)], "B" = [(1, 3, -1),(2, 2, -1),(3, 0, -1)]`


Show that AB = BA where, 

A = `[(costheta, - sintheta),(sintheta, costheta)], "B" = [(cosphi, -sinphi),(sinphi, cosphi)]`


If A = `[(4, 8),(-2, -4)]`, prove that A2 = 0


Verify A(BC) = (AB)C of the following case:

A = `[(1, 0, 1),(2, 3, 0),(0, 4, 5)], "B" = [(2, -2),(-1, 1),(0, 3)] and "C" = [(3, 2, -1),(2, 0, -2)]`


Verify A(BC) = (AB)C of the following case:

A = `[(2, 4, 3),(-1, 3, 2)], "B" = [(2, -2),(3, 3),(-1, 1)], "C" = [(3, 1),(1, 3)]`


Verify that A(B + C) = AB + AC of the following matrix:

A = `[(1, -1, 3),(2, 3, 2)], "B" = [(1, 0),(-2, 3),(4, 3)], "C" = [(1, 2),(-2, 0),(4, -3)]`


If A = `[(1, -2),(5, 6)], "B" = [(3, -1),(3, 7)]`, Find AB - 2I, where I is unit matrix of order 2.


If A = `[(1, 2, 0),(5, 4, 2),(0, 7, -3)]`, find the product (A + I)(A − I)


A = `[(alpha, 0),(1, 1)], "B" = [(1, 0),(2, 1)]` find α, if A2 = B.


If A = `[(8, 4),(10, 5)], "B" = [(5, -4),(10, -8)]` show that (A + B)2 = A2 + AB + B2 


If A = `[(3, 4),(-4, 3)] and "B" = [(2, 1),(-1, 2)]`, show that (A + B)(A – B) = A2 – B


If A = `[(1, 2),(-1, -2)], "B" = [(2, "a"),(-1, "b")]` and if (A + B)2 = A2 + B2 . find values of a and b


Find matrix X such that AX = B, where A = `[(1, -2),(-2, 1)]` and B = `[(-3),(-1)]`


Find k, if A= `[(3, -2),(4, -2)]` and if A2 = kA – 2I


Find x, if `[(1, "x", 1)][(1, 2, 3),(4, 5, 6),(3, 2, 5)] [(1),(-2), (3)]` = 0


Find x and y, if `{4[(2, -1, 3),(1, 0, 2)] -[(3, -3, 4),(2, 1, 1)]} [(2),(-1),(1)] = [(x),(y)]`


Find x, y, z if `{3[(2, 0),(0, 2),(2, 2)] -4[(1, 1),(-1, 2),(3, 1)]} [(1),(2)]` = `[("x" - 3),("y" - 1),(2"z")]`


If A = `[(1, 2),(3, 5)]` B = `[(0, 4),(2, -1)]`, show that AB ≠ BA, but |AB| = IAl·IBI


Jay and Ram are two friends in a class. Jay wanted to buy 4 pens and 8 notebooks, Ram wanted to buy 5 pens and 12 notebooks. Both of them went to a shop. The price of a pen and a notebook which they have selected was Rs.6 and Rs.10. Using Matrix multiplication, find the amount required from each one of them


Select the correct option from the given alternatives:

If `[(5, 7),(x, 1),(2, 6)] - [(1, 2),(-3, 5),(2, y)] = [(4, 5),(4, -4),(0, 4)]` then __________


Select the correct option from the given alternatives:

If `[("x", 3"x" - "y"),("zx" + "z", 3"y" - "w")] = [(3, 2),(4, 7)]` then ______


Answer the following question:

If f(α) = A = `[(cosalpha, -sinalpha, 0),(sinalpha, cosalpha, 0),(0, 0, 1)]`, Find f(– α)


Answer the following question:

If Aα = `[(cosalpha, sinalpha),(-sinalpha, cosalpha)]`, show that Aα . Aβ = Aα+β 


Answer the following question:

If A = `[(2, -2, -4),(-1, 3, 4),(1, -2, -3)]` show that A2 = A


Answer the following question:

If A = `[(4, -1, -4),(3, 0, -4),(3, -1, -3)]`, show that A2 = I


Answer the following question:

If A = `[(2, -1),(-1, 2)]`, show that A2 – 4A + 3I = 0


Answer the following question:

If A = `[(2, -1),(3, -2)]`, find A 


Answer the following question:

Find x, y if, `{-1 [(1, 2, 1),(2, 0, 3)] + 3[(2, -3, 7),(1, -1, 3)]} [(5),(0),(-1)] = [(x),(y)]`


Answer the following question:

Find x, y, z if `{[(1, 3, 2),(2, 0, 1),(3, 1, 2)] + 2[(3, 0, 2),(1, 4, 5),(2, 1, 0)]} [(1),(2),(3)] = [(x),(y),(z)]`


If A = `[(1, 0, 0),(0, 1, 0),("a", "b", -1)]` and I is the unit matrix of order 3, then A2 + 2A4 + 4A6 is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×