Advertisements
Advertisements
प्रश्न
अवकल समीकरण (x – y)(dx + dy) = dx – dy का एक विशिष्ट हल ज्ञात कीजिए, दिया हुआ है कि y = -1, यदि x = 0.
उत्तर
दिया है, अवकल समीकरण
(x - y) (dx + dy) = dx - dy
(x - y - 1) dx + (x – y + 1) dy = 0
`therefore dy/dx = (x - y - 1)/(x - y + 1)`
अब, x - y = t रखने पर,
`1 - dy/dx = dt/dx`
`therefore dy/dx = 1 - dt/dx`
`therefore 1 - dt/dx = (- t - 1)/(t + 1)`
या `dt/dx = 1 + (t - 1)/(t + 1)`
`= (t + 1 + t - 1)/(t + 1)`
`=> dt/dx = (2t)/(t + 1)`
`=> dt/dx = (2t)/(t + 1)`
`=> (t + 1)/t dt = 2 dx`
समाकलन करने पर,
`int (t + 1)/t dt + 2 int dx + C`
या `int (1 + 1/t)dt = 2x + C`
∴ t + log t = 2x + C ...[t = x - y रखने पर]
⇒ x - y + log (x - y) = 2x + C
या log (x - y) = x + y + C
x = 0, y = - 1 रखने पर,
0 = 0 - 1 + C
∴ C = 1
अभीष्ट हल है:
log(x - y) = x + y + 1
APPEARS IN
संबंधित प्रश्न
प्रश्न में सत्यापित कीजिए कि दिया हुआ फलन (स्पष्ट अथवा अस्पष्ट),संगत अवकल समीकरण का हल है:
y = x2 + 2x + C : y’ - 2x - 2 = 0
प्रश्न में सत्यापित कीजिए कि दिया हुआ फलन (स्पष्ट अथवा अस्पष्ट),संगत अवकल समीकरण का हल है:
y = cos x + C: y’ + sin x = 0
प्रश्न में सत्यापित कीजिए कि दिया हुआ फलन (स्पष्ट अथवा अस्पष्ट),संगत अवकल समीकरण का हल है:
`y = sqrt(1 + x^2) : y' (xy)/(1 + x^2)`
प्रश्न में सत्यापित कीजिए कि दिया हुआ फलन (स्पष्ट अथवा अस्पष्ट),संगत अवकल समीकरण का हल है:
y = Ax : xy’ = y (x ≠ 0)
प्रश्न में सत्यापित कीजिए कि दिया हुआ फलन (स्पष्ट अथवा अस्पष्ट),संगत अवकल समीकरण का हल है:
`y = x sin x : xy’ = y + x sqrt(x^2 - y^2)` (x ≠ 0 और x > y अथवा x < - y)
प्रश्न में सत्यापित कीजिए कि दिया हुआ फलन (स्पष्ट अथवा अस्पष्ट),संगत अवकल समीकरण का हल है:
xy = log y + C : `y’ = y^2/(1 - xy) (xy ne 1)`
प्रश्न में सत्यापित कीजिए कि दिया हुआ फलन (स्पष्ट अथवा अस्पष्ट),संगत अवकल समीकरण का हल है:
y - cos y = x : (y sin y + cos y + x) y’ = y
प्रश्न में सत्यापित कीजिए कि दिया हुआ फलन (स्पष्ट अथवा अस्पष्ट),संगत अवकल समीकरण का हल है:
x + y = tan-1y : y2 y’ + y2 + 1 = 0
तीन कोटि वाले किसी अवकल समीकरण के विशिष्ट हल में उपस्थित स्वेच्छ अचरों की संख्या है:
निम्नलिखित प्रश्न को सत्यापित कीजिए कि दिया हुआ फलन (अस्पष्ट अथवा स्पष्ट) संगत अवकल समीकरण का हल है।
xy = a ex + b e-x + x2 : `x (d^2y)/dx^2 + 2 dy/dx - xy + x^2 - 2 = 0`
निम्नलिखित प्रश्न को सत्यापित कीजिए कि दिया हुआ फलन (अस्पष्ट अथवा स्पष्ट) संगत अवकल समीकरण का हल है।
y = ex (a cos x + b sin x) : `(d^2y)/dx^2 - 2 dy/dx + 2 y = 0`
निम्नलिखित प्रश्न को सत्यापित कीजिए कि दिया हुआ फलन (अस्पष्ट अथवा स्पष्ट) संगत अवकल समीकरण का हल है।
y = x sin 3x : `(d^2y)/dx^2 + 9 y - 6 cos 3x = 0`
निम्नलिखित प्रश्न को सत्यापित कीजिए कि दिया हुआ फलन (अस्पष्ट अथवा स्पष्ट) संगत अवकल समीकरण का हल है।
`x^2 = 2y^2 log y : (x^2 + y^2) dy/dx - xy = 0`
अवकल समीकरण (1 + e2x) dy + (1 + y2)ex dx = 0 का एक विशिष्ट हल ज्ञात कीजिए, दिया हुआ है कि y = 1 यदि x = 0.
अवकल समीकरण `y e^(x/y) dx = (x e ^(x/y) + y^2) dy (y ne 0)` का हल ज्ञात कीजिए।
अवकल समीकरण `[e^(- 2sqrtx)/sqrtx - y/sqrtx] dx/dy = 1 (x ne 0)` का हल ज्ञात कीजिए।
अवकल समीकरण `dy/dx + y cot x = 4x cosec x` (x ≠ 0) का एक विशिष्ट हल ज्ञात कीजिए। दिया हुआ है : y = 0 यदि x = `pi/2`.