рдорд░рд╛рдареА

Below Fig Shows a Sector of a Circle, Centre O. Containing an Angle ЁЭЬГ┬░. Prove That Perimeter of Shaded Region is ЁЭСЯ (Tan ЁЭЬГ + Sec ЁЭЬГ +`(Pitheta)/180`тИТ 1) - Mathematics

Advertisements
Advertisements

рдкреНрд░рд╢реНрди

Below fig shows a sector of a circle, centre O. containing an angle ЁЭЬГ°. Prove that Perimeter of shaded region is ЁЭСЯ (tan ЁЭЬГ + sec ЁЭЬГ +`(pitheta)/180`− 1)

рдЙрддреНрддрд░

Given angle subtended at centre of circle = ЁЭЬГ

∠OAB = 90° [At joint of contact, tangent is perpendicular to radius]

OAB is right angle triangle

Cos ЁЭЬГ =`(adj.side)/(hypotenuse) =r/OB`⇒ ЁЭСВЁЭР╡ = ЁЭСЯ sec ЁЭЬГ … … (ЁЭСЦ)

tan ЁЭЬГ =`(opp.side)/(adju.side)=AB/r`⇒ ЁЭР┤ЁЭР╡ = ЁЭСЯ tan ЁЭЬГ … … . (ЁЭСЦЁЭСЦ)

Perimeter of shaded region = AB + BC + (CA arc)

= ЁЭСЯ tan ЁЭЬГ + (ЁЭСВЁЭР╡ − ЁЭСВЁЭР╢) +`theta/360^@`× 2ЁЭЬЛЁЭСЯ

= ЁЭСЯ tan ЁЭЬГ + ЁЭСЯ sec ЁЭЬГ − ЁЭСЯ +`(pithetar)/180^@`

= ЁЭСЯ (tan ЁЭЬГ + sec ЁЭЬГ +`(pitheta)/180^@`− 1)

 

shaalaa.com
  рдпрд╛ рдкреНрд░рд╢реНрдирд╛рдд рдХрд┐рдВрд╡рд╛ рдЙрддреНрддрд░рд╛рдд рдХрд╛рд╣реА рддреНрд░реБрдЯреА рдЖрд╣реЗ рдХрд╛?
рдкрд╛рда 13: Areas Related to Circles - Exercise 13.2 [рдкреГрд╖реНрда реирел]

APPEARS IN

рдЖрд░рдбреА рд╢рд░реНрдорд╛ Mathematics [English] Class 10
рдкрд╛рда 13 Areas Related to Circles
Exercise 13.2 | Q 26.1 | рдкреГрд╖реНрда реирел

рд╡реНрд╣рд┐рдбрд┐рдУ рдЯреНрдпреВрдЯреЛрд░рд┐рдпрд▓VIEW ALL [4]

Share
Notifications

Englishрд╣рд┐рдВрджреАрдорд░рд╛рдареА


      Forgot password?
Use app×