मराठी

CDE is an equilateral triangle formed on a side CD of a square ABCD (Figure). Show that ∆ADE ≅ ∆BCE. - Mathematics

Advertisements
Advertisements

प्रश्न

CDE is an equilateral triangle formed on a side CD of a square ABCD (Figure). Show that ∆ADE ≅ ∆BCE.

बेरीज

उत्तर

Given in figure triangle CDE is an equilateral triangle formed on a side CD of a square ABCD.

To proof that ΔADE ≅ ∆BCE

Proof: In triangle ADE and triangle BCE,

DE = CE  ...[Side of an equilateral triangle]

∠ADE = ∠BCE

∠ADC = ∠BCD = 90° and ∠EDC = ∠ECD = 60°

∠ADE = 90° + 60° = 150° and ∠BCE = 90° + 60° = 150°

AD = BC  ...[Sides of a square]

∆ADE ≅ ∆BCE   ...[By SAS congruence rule]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 7: Triangles - Exercise 7.3 [पृष्ठ ६७]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 9
पाठ 7 Triangles
Exercise 7.3 | Q 3. | पृष्ठ ६७

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×