मराठी
कर्नाटक बोर्ड पी.यू.सी.पीयूसी विज्ञान इयत्ता ११

Consider a Non-conducting Plate of Radius R and Mass M that Has a Charge Q Distributed Uniformly Over It. the Plate is Rotated About Its Axis with an Angular - Physics

Advertisements
Advertisements

प्रश्न

Consider a non-conducting plate of radius r and mass m that has a charge q distributed uniformly over it. The plate is rotated about its axis with an angular speed ω. Show that the magnetic moment µ and the angular momentum l of the plate are related as `mu = q/(2 m)l`

बेरीज

उत्तर

Given:
Radius of the ring =  r
Mass of the ring =  m
Total charge of the ring =  q
Angular speed, w = `(2pi)/T ⇒ T = (2pi)/w`
Current in the ring, `i = q/t = (qw)/(2pi)`
For the ring of area A with current i, magnetic moment,
`mu = niA =ia [n = 1]`
= `(qw)/(2pi)xx pir^2 = (qwr^2)/(2)`
Angular momentum, `l =  Iw`,
where I is the moment of inertia of the ring about its axis of rotation.
`I = mr^2`
`so, l =mr^2w`
⇒ `wr^2 = 1/m=`
Putting this value in equation (i), we get:
`mu = (ql)/(2m)`

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 12: Magnetic Field - Exercises [पृष्ठ २३४]

APPEARS IN

एचसी वर्मा Concepts of Physics Vol. 2 [English] Class 11 and 12
पाठ 12 Magnetic Field
Exercises | Q 60 | पृष्ठ २३४

संबंधित प्रश्‍न

A short bar magnet of magnetic moment 0.9 J/T is placed with its axis at 30° to a uniform magnetic field. It experiences a torque of 0.063 J.

(i) Calculate the magnitude of the magnetic field.

(ii) In which orientation will the bar magnet be in stable equilibrium in the magnetic field?


You are facing a circular wire carrying an electric current. The current is clockwise as seen by you. Is the field at the centre coming towards you or going away from you?


Two parallel wires carry currents of 20 A and 40 A in opposite directions. Another wire carying a current anti parallel to 20 A is placed midway between the two wires. T he magnetic force on it will be


A wire of length l carries a current i long the x-axis. A magnetic field exists, which is given as `vecB = B_0 (veci + vecj + veck)`  T. Find the magnitude of the magnetic force acting on the wire.


A rigid wire consists of a semi-circular portion of radius R and two straight sections (figure). The wire is partially immersed in a perpendicular magnetic field B, as shown in the figure. Find the magnetic force on the wire if it carries a current i.


Consider a solid sphere of radius r and mass m that has a charge q distributed uniformly over its volume. The sphere is rotated about its diameter with an angular speed ω. Show that the magnetic moment µ and the angular momentum l of the sphere are related as `mu = q/(2m) l`


Consider a straight piece of length x of a wire carrying a current i. Let P be a point on the perpendicular bisector of the piece, situated at a distance d from its middle point. Show that for d >> x, the magnetic field at P varies as 1/d2 whereas for d << x, it varies as 1/d.  


The wire ABC shown in figure forms an equilateral triangle. Find the magnetic field B at the centre O of the triangle assuming the wire to be uniform. 


A long wire carrying a current i is bent to form a place along α . Find the magnetic field B at a point on the bisector of this angle situated at a distance x from the vertex.


Figure shows a part of an electric circuit. The wires AB, CD and EF are long and have identical resistance. The  separation between the neighbouring wires is 1.0 cm. The wires AE and BF have negligible resistance and the ammeter reads 30 A. Calculate the magnetic force per unit length of AB and CD. 


A straight horizontal conducting rod of length 0.45 m and mass 60 g is suspended by two vertical wires at its ends. A current of 5.0 A is set up in the rod through the wires.

(a) What magnetic field should be set up normal to the conductor in order that the tension in the wires is zero?

(b) What will be the total tension in the wires if the direction of current is reversed keeping the magnetic field same as before?
(Ignore the mass of the wires) g = 9.8 m s–2.


An electron is projected with uniform velocity along the axis of a current carrying long solenoid. Which of the following is true?


When a magnetic compass needle is carried nearby to a straight wire carrying current, then

  1. the straight wire cause a noticeable deflection in the compass needle.
  2. the alignment of the needle is tangential to an imaginary circle with straight wire as its centre and has a plane perpendicular to the wire.

A charged particle is moving on circular path with velocity v in a uniform magnetic field B, if the velocity of the charged particle is doubled and strength of magnetic field is halved, then radius becomes ______.


A small object with charge q and weight mg is attached to one end of a string of length ‘L’ attached to a stationary support. The system is placed in a uniform horizontal electric field ‘E’, as shown in the accompanying figure. In the presence of the field, the string makes a constant angle θ with the vertical. The sign and magnitude of q ______.


A straight conductor of length 2m moves at a speed of 20 m/s. When the conductor makes an angle of 30° with the direction of magnetic field of induction of 0.1 wbm2 then induced emf:


A conducting loop of resistance R and radius r has its centre at the origin of the coordinate system in a magnetic field of induction B. When it is rotated about y-axis through 90°, the net charge flown in the loop is directly proportional to:


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×