मराठी
तामिळनाडू बोर्ड ऑफ सेकेंडरी एज्युकेशनएचएससी विज्ञान इयत्ता ११

Consider two simple harmonic motion along the x and y-axis having the same frequencies but different amplitudes as x = A sin (ωt + φ) (along x-axis) and y = B sin ωt (along y-axis). Then show that - Physics

Advertisements
Advertisements

प्रश्न

Consider two simple harmonic motion along the x and y-axis having the same frequencies but different amplitudes as x = A sin (ωt + φ) (along x-axis) and y = B sin ωt (along y-axis). Then show that

`"x"^2/"A"^2 + "y"^2/"B"^2 - (2"xy")/"AB" cos φ = sin^2 φ`

and also discuss the special cases when

  1. φ = 0
  2. φ = π
  3. φ = `π/2`
  4. φ = `π/2` and A = B
  5. φ = `π/4`

Note: when a particle is subjected to two simple harmonic motions at right angle to each other the particle may move along different paths. Such paths are called Lissajous figures.

संख्यात्मक

उत्तर

Given: x = A sin (ωt + φ) ..................(1)

y = B sin ωt .............(2)

In equation (1) use,

sin (A – B) – sin A cos B + cos A sin B

x – A sin ωt. cos (φ) + A cos ωt. sin φ

x – A sin cot. cos φ = A cos cot sin φ

squaring on both sides we get,
(x – A sin cot. cos φ)2 = A2 cos2 cot sin2 φ ........(3)

In equation (3) sin at can be re-written as, `"y"/"B"` .............[from equation (2)]

Also, use

cos2 cot = 1 – sin2 ωt in equation (3)

∴ Equation (3) becomes on expansion

`("x" - "A""y"/"B". cos Φ)^2 = "A"^2 (1 - "y"^2/"B"^2) sin^2 Φ`

`"x"^2 + ("A"^2"y"^2)/"B"^2 cos^2 Φ - (2"xAy")/"B" cos Φ`

= `"A"^2 sin^2 Φ - ("A"^2"y"^2)/"B"^2 sin^2 Φ` ......(4)

`"x"^2 + ("A"^2"y"^2)/"B"^2 (sin^2 Φ + cos^2 Φ) - (2"xyA")/"B" cos Φ`

= A2 sin2 Φ ......(÷ by A2)

We get,

`"x"^2/"A"^2 + "y"^2/"B"^2. 1 - (2"xy")/"AB" cos Φ = sin^2 Φ` ......(5)

Hence proved.

Special cases:

a. φ = 0 in equation (5) we get,

`"x"^2/"A"^2 + "y"^2/"B"^2 - (2"xy")/"AB".1 = 0`

or `("x"/"A" - "y"/"B")^2` = 0

or `"x"/"A" = "y"/"B"`

y = `"B"/"A"."x"`

The above equation resembles the equation of a straight line passing through origin with a positive slope.

b. φ = π in equation (5)

`"x"^2/"A"^2 + "y"^2/"B"^2 + (2"xy")/"AB" = 0`

or `("x"/"A" + "y"/"B")^2` = 0

or `"x"/"A" = -"y"/"B"`

y = `-"B"/"A"."x"`

The above equation is an equation of a straight line passing through origin with a negative slope.

c. φ = `π/2` in equation (5)

The above equation of an ellipse whose centre is origin.

d. φ = `π/2` and A = B n equation (5)

`"x"^2/"A"^2 + "y"^2/"A"^2` = 1

x2 + y2 = A2

The above equation of a circle whose centre is origin.

e. φ = `π/4, cos π/4 = 1/sqrt2 = 1/sqrt2` equation (5) we get,

`"x"^2/"A"^2 + "y"^2/"A"^2 - (sqrt(2)"xy")/"AB" = 1/2`

The above equation is an equation of tilted ellipse.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 10: Oscillations - Evaluation [पृष्ठ २२१]

APPEARS IN

सामाचीर कलवी Physics - Volume 1 and 2 [English] Class 11 TN Board
पाठ 10 Oscillations
Evaluation | Q IV. 4. | पृष्ठ २२१

संबंधित प्रश्‍न

A particle executes simple harmonic motion. If you are told that its velocity at this instant is zero, can you say what is its displacement? If you are told that its velocity at this instant is maximum, can you say what is its displacement?


A hollow sphere filled with water is used as the bob of a pendulum. Assume that the equation for simple pendulum is valid with the distance between the point of suspension and centre of mass of the bob acting as the effective length of the pendulum. If water slowly leaks out of the bob, how will the time period vary?


The distance moved by a particle in simple harmonic motion in one time period is


The displacement of a particle is given by \[\overrightarrow{r} = A\left( \overrightarrow{i} \cos\omega t + \overrightarrow{j} \sin\omega t \right) .\] The motion of the particle is

 

A pendulum clock keeping correct time is taken to high altitudes,


Which of the following quantities are always positive in a simple harmonic motion?


A simple pendulum of length 1 feet suspended from the ceiling of an elevator takes π/3 seconds to complete one oscillation. Find the acceleration of the elevator.


A uniform disc of mass m and radius r is suspended through a wire attached to its centre. If the time period of the torsional oscillations be T, what is the torsional constant of the wire?


A body oscillates with SHM according to the equation x = 5 cos `(2π"t" + π/4)`. Its instantaneous displacement at t = 1 sec is:


A body having specific charge 8 µC/g is resting on a frictionless plane at a distance 10 cm from the wall (as shown in the figure). It starts moving towards the wall when a uniform electric field of 100 V/m is applied horizontally toward the wall. If the collision of the body with the wall is perfectly elastic, then the time period of the motion will be ______ s.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×