मराठी

Construct a Rhombus Abcd with Sides of Length 5 Cm and Diagonal Ac of Length 6 Cm - Mathematics

Advertisements
Advertisements

प्रश्न

Construct a rhombus ABCD with sides of length 5 cm and diagonal AC of length 6 cm. Measure ∠ ABC. Find the point R on AD such that RB = RC. Measure the length of AR. 

आकृती

उत्तर

Steps of Construction: 

(i) Draw AC= 6 cm. 

(ii) With A as centre, draw two arcs of 5 cm on both sides of line AC. 

(iii) With C as centre, draw two arcs of 5 cm on both sides of line AC. 

(iv) All the arcs meet at Band D. Join AB, AD, BC and BD. ABCD is the required rhombus. 

(v) On measuring, ∠ ABC = 78>. 

(vi) Draw perpendicular bisector of BC meeting AD at R. R is the pdnt equidistant from Band C, hence RB = RC. 

(vii) On measuring, R = 1.2 cm 

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 16: Loci - Exercise 16.1

APPEARS IN

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

On a graph paper, draw the line x = 6. Now, on the same graph paper, draw the locus of the point which moves in such a way that its distantce from the given line is always equal to 3 units 


Angle ABC = 60° and BA = BC = 8 cm. The mid-points of BA and BC are M and N respectively. Draw and describe the locus of a point which is:

  1. equidistant from BA and BC.
  2. 4 cm from M.
  3. 4 cm from N.
    Mark the point P, which is 4 cm from both M and N, and equidistant from BA and BC. Join MP and NP, and describe the figure BMPN.

Construct a triangle BCP given BC = 5 cm, BP = 4 cm and ∠PBC = 45°.

  1. Complete the rectangle ABCD such that:
    1. P is equidistant from AB and BC.
    2. P is equidistant from C and D.
  2. Measure and record the length of AB. 

Draw a straight line AB of 9 cm. Draw the locus of all points which are equidistant from A and B. Prove your statement. 


A and B are fixed points while Pis a moving point, moving in a way that it is always equidistant from A and B. What is the locus of the path traced out by the pcint P? 


In Δ PQR, bisectors of  ∠ PQR and ∠ PRQ meet at I. Prove that I is equidistant from the three sides of the triangle , and PI bisects ∠ QPR . 


Draw and describe the lorus in  the following cases: 

The locus of points at a distance of 4 cm from a fixed line. 


Using only a ruler and compass construct ∠ABC = 120°, where AB = BC = 5 cm.
(i) Mark two points D and E which satisfy the condition that they are equidistant from both ABA and BC.
(ii) In the above figure, join AD, DC, AE and EC. Describe the figures:
(a) AECB, (b) ABD, (c) ABE.


Without using set squares or protractor.
(i) Construct a ΔABC, given BC = 4 cm, angle B = 75° and CA = 6 cm.
(ii) Find the point P such that PB = PC and P is equidistant from the side BC and BA. Measure AP.


Ruler and compass only may be used in this question. All construction lines and arcs must be clearly shown, and be of sufficient length and clarity to permit assessment.
(i) Construct Δ ABC, in which BC = 8 cm, AB = 5 cm, ∠ ABC = 60°.
(ii) Construct the locus of point inside the triangle which are equidistant from BA and BC.
(iii) Construct the locus of points inside the triangle which are equidistant from B and C.
(iv) Mark as P, the point which is equidistant from AB, BC and also equidistant from B and C.
(v) Measure and record the length of PB.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×