हिंदी

Construct a Rhombus Abcd with Sides of Length 5 Cm and Diagonal Ac of Length 6 Cm - Mathematics

Advertisements
Advertisements

प्रश्न

Construct a rhombus ABCD with sides of length 5 cm and diagonal AC of length 6 cm. Measure ∠ ABC. Find the point R on AD such that RB = RC. Measure the length of AR. 

आकृति

उत्तर

Steps of Construction: 

(i) Draw AC= 6 cm. 

(ii) With A as centre, draw two arcs of 5 cm on both sides of line AC. 

(iii) With C as centre, draw two arcs of 5 cm on both sides of line AC. 

(iv) All the arcs meet at Band D. Join AB, AD, BC and BD. ABCD is the required rhombus. 

(v) On measuring, ∠ ABC = 78>. 

(vi) Draw perpendicular bisector of BC meeting AD at R. R is the pdnt equidistant from Band C, hence RB = RC. 

(vii) On measuring, R = 1.2 cm 

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 16: Loci - Exercise 16.1

APPEARS IN

फ्रैंक Mathematics - Part 2 [English] Class 10 ICSE
अध्याय 16 Loci
Exercise 16.1 | Q 6

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Draw an angle ABC = 75°. Find a point P such that P is at a distance of 2 cm from AB and 1.5 cm from BC.


State the locus of a point in a rhombus ABCD, which is equidistant

  1. from AB and AD;
  2. from the vertices A and C.

Construct an isosceles triangle ABC such that AB = 6 cm, BC = AC = 4 cm. Bisect ∠C internally and mark a point P on this bisector such that CP = 5 cm. Find the points Q and R which are 5 cm from P and also 5 cm from the line AB. 


Construct a triangle BCP given BC = 5 cm, BP = 4 cm and ∠PBC = 45°.

  1. Complete the rectangle ABCD such that:
    1. P is equidistant from AB and BC.
    2. P is equidistant from C and D.
  2. Measure and record the length of AB. 

Draw a straight line AB of 9 cm. Draw the locus of all points which are equidistant from A and B. Prove your statement. 


Construct a Δ XYZ in which XY= 4 cm, YZ = 5 cm and ∠ Y = 1200. Locate a point T such that ∠ YXT is a right angle and Tis equidistant from Y and Z. Measure TZ. 


Construct a triangle ABC, such that AB= 6 cm, BC= 7.3 cm and CA= 5.2 cm. Locate a point which is equidistant from A, B and C.


State and draw the locus of a swimmer maintaining the same distance from a lighthouse.


Without using set squares or protractor construct:
(i) Triangle ABC, in which AB = 5.5 cm, BC = 3.2 cm and CA = 4.8 cm.
(ii) Draw the locus of a point which moves so that it is always 2.5 cm from B.
(iii) Draw the locus of a point which moves so that it is equidistant from the sides BC and CA.
(iv) Mark the point of intersection of the loci with the letter P and measure PC.


Use ruler and compasses only for the following questions:
Construct triangle BCP, when CB = 5 cm, BP = 4 cm, ∠PBC = 45°.
Complete the rectangle ABCD such that :
(i) P is equidistant from AB and BC and
(ii) P is equidistant from C and D. Measure and write down the length of AB.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×