मराठी
कर्नाटक बोर्ड पी.यू.सी.पीयूसी विज्ञान इयत्ता ११

∫ D X √ 2 a X − X 2 = a N Sin − 1 [ X a − 1 ] the Value of N is You May Use Dimensional Analysis to Solve the Problem. - Physics

Advertisements
Advertisements

प्रश्न

\[\int\frac{dx}{\sqrt{2ax - x^2}} = a^n \sin^{- 1} \left[ \frac{x}{a} - 1 \right]\] 
The value of n is

पर्याय

  • 0

  • -1

  • 1

  • none of these.

MCQ

उत्तर

0
[ax] = [x2]
⇒ [a] = [x]    ...(1)
Dimension of LHS = Dimension of RHS

\[\Rightarrow \left[ \frac{dx}{\sqrt{x^2}} \right] = \left[ a^n \right]\]

\[ \Rightarrow \left[ \frac{L}{L} \right] = \left[ a^n \right] . . . (2) \]

\[[ L^0 ] = [ a^n ]\]

\[n = 0\]

shaalaa.com

Notes

You may use dimensional analysis to solve the problem.

  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 1: Introduction to Physics - MCQ [पृष्ठ ९]

APPEARS IN

एचसी वर्मा Concepts of Physics Vol. 1 [English] Class 11 and 12
पाठ 1 Introduction to Physics
MCQ | Q 6 | पृष्ठ ९

संबंधित प्रश्‍न

What are the dimensions of the ratio of the volume of a cube of edge a to the volume of a sphere of radius a?


Suggest a way to measure the thickness of a sheet of paper.


Suppose a quantity x can be dimensionally represented in terms of M, L and T, that is, `[ x ] = M^a L^b T^c`.  The quantity mass


A unitless quantity


Find the dimensions of frequency .


Find the dimensions of electric field E. 

The relevant equations are \[F = qE, F = qvB, \text{ and }B = \frac{\mu_0 I}{2 \pi a};\]
where F is force, q is charge, v is speed, I is current, and a is distance.


Find the dimensions of the coefficient of linear expansion α and


Test if the following equation is dimensionally correct:
\[v = \sqrt{\frac{P}{\rho}},\]

where v = velocity, ρ = density, P = pressure


Test if the following equation is dimensionally correct:
\[V = \frac{\pi P r^4 t}{8 \eta l}\]

where v = frequency, P = pressure, η = coefficient of viscosity.


Let x and a stand for distance. Is
\[\int\frac{dx}{\sqrt{a^2 - x^2}} = \frac{1}{a} \sin^{- 1} \frac{a}{x}\] dimensionally correct?


Is it possible to add two vectors of unequal magnitudes and get zero? Is it possible to add three vectors of equal magnitudes and get zero?


Can a vector have zero component along a line and still have nonzero magnitude?


Let \[\vec{A} = 3 \vec{i} + 4 \vec{j}\]. Write a vector \[\vec{B}\] such that \[\vec{A} \neq \vec{B}\], but A = B.


Which of the sets given below may represent the magnitudes of three vectors adding to zero?


A vector \[\vec{A}\] points vertically upward and \[\vec{B}\] points towards the north. The vector product \[\vec{A} \times \vec{B}\] is


Let \[\vec{a} = 4 \vec{i} + 3 \vec{j} \text { and } \vec{b} = 3 \vec{i} + 4 \vec{j}\]. Find the magnitudes of (a)  \[\vec{a}\] ,  (b)  \[\vec{b}\] ,(c) \[\vec{a} + \vec{b} \text { and }\] (d) \[\vec{a} - \vec{b}\].


Two vectors have magnitudes 2 unit and 4 unit respectively. What should be the angle between them if the magnitude of the resultant is (a) 1 unit, (b) 5 unit and (c) 7 unit.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×