मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी विज्ञान (सामान्य) इयत्ता ११ वी

Define coefficient of restitution. - Physics

Advertisements
Advertisements

प्रश्न

Define coefficient of restitution.

व्याख्या

उत्तर

For two colliding bodies, the negative of the ratio of the relative velocity of separation to the relative velocity of approach is called the coefficient of restitution.

shaalaa.com
Collisions
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 4: Laws of Motion - Exercises [पृष्ठ ७५]

APPEARS IN

बालभारती Physics [English] 11 Standard Maharashtra State Board
पाठ 4 Laws of Motion
Exercises | Q 2. (xiv) | पृष्ठ ७५

संबंधित प्रश्‍न

In an inelastic collision of two bodies, the quantities which do not change after the collision are the ______ of the system of two bodies.


State if the following statement is true or false. Give a reason for your answer. 

Total energy of a system is always conserved, no matter what internal and external forces on the body are present.


State if the following statement is true or false. Give a reason for your answer.

In an inelastic collision, the final kinetic energy is always less than the initial kinetic energy of the system.


A bullet of mass 0.012 kg and horizontal speed 70 m s–1 strikes a block of wood of mass 0.4 kg and instantly comes to rest with respect to the block. The block is suspended from the ceiling by means of thin wires. Calculate the height to which the block rises. Also, estimate the amount of heat produced in the block.


Which of the following potential energy curves in Fig. cannot possibly describe the elastic collision of two billiard balls? Here r is distance between centres of the balls.


Consider the decay of a free neutron at rest : n → p + e

Show that the two-body decay of this type must necessarily give an electron of fixed energy and, therefore, cannot account for the observed continuous energy distribution in the β-decay of a neutron or a nucleus

 


Answer the following question.

Obtain its value for an elastic collision and a perfectly inelastic collision.


Answer the following question.

Discuss the following as special cases of elastic collisions and obtain their exact or approximate final velocities in terms of their initial velocities.

  1. Colliding bodies are identical.
  2. A very heavy object collides on a lighter object, initially at rest.
  3. A very light object collides on a comparatively much massive object, initially at rest.

Answer the following question.

A bullet of mass m1 travelling with a velocity u strikes a stationary wooden block of mass m2 and gets embedded into it. Determine the expression for loss in the kinetic energy of the system. Is this violating the principle of conservation of energy? If not, how can you account for this loss?


Solve the following problem.

A marble of mass 2m travelling at 6 cm/s is directly followed by another marble of mass m with double speed. After a collision, the heavier one travels with the average initial speed of the two. Calculate the coefficient of restitution.


Explain the characteristics of elastic and inelastic collision.


A ball is thrown vertically down from height of 80 m from the ground with an initial velocity 'v'. The ball hits the ground, loses `1/6`th of its total mechanical energy, and rebounds back to the same height. If the acceleration due to gravity is 10 ms-2, the value of 'v' is


In Rutherford experiment, for head-on collision of a-particles with a gold nucleus, the impact parameter is ______.


A ball of mass 0.1 kg makes an elastic head-on collision with a ball of unknown mass, initially at rest. If the 0 .1 kg ball rebounds at one-third of its original speed, the mass of the other ball is ______.


A mass M moving with velocity 'v' along x-axis collides and sticks to another mass 2M which is moving along Y-axis with velocity 3v. After collision, the velocity of the combination is ______.


A particle of mass 'm' collides with another stationary particle of mass 'M'. A particle of mass 'm' stops just after collision. The coefficient of restitution is ______.


A block of mass 'm' moving along a straight line with constant velocity `3vec"v"` collides with another block of same mass at rest. They stick together and move with common velocity. The common velocity is ______.


Two bodies of masses 3 kg and 2 kg collide bead-on. Their relative velocities before and after collision are 20 m/s and 5 m/s respectively. The loss of kinetic energy of the system is ______.


A body of mas 'm' moving with speed 3 m/s collides with a body of mass '2m' at rest. The coalesced mass will start to move with a speed of ______.


A bullet fired from gun with a velocity 30 m/s at an angle of 60° with horizontal direction. At the highest point of its path, the bullet explodes into two parts with masses in the ratio 1:3. The lighter mass comes to rest immediately. Then the speed of the heavier mass is


During inelastic collision between two bodies, which of the following quantities always remain conserved?


A cricket ball of mass 150 g moving with a speed of 126 km/h hits at the middle of the bat, held firmly at its position by the batsman. The ball moves straight back to the bowler after hitting the bat. Assuming that collision between ball and bat is completely elastic and the two remain in contact for 0.001s, the force that the batsman had to apply to hold the bat firmly at its place would be ______.


Consider a one-dimensional motion of a particle with total energy E. There are four regions A, B, C and D in which the relation between potential energy V, kinetic energy (K) and total energy E is as given below:

Region A : V > E
Region B : V < E
Region C : K > E
Region D : V > K

State with reason in each case whether a particle can be found in the given region or not.


A rod of mass M and length L is lying on a horizontal frictionless surface. A particle of mass 'm' travelling along the surface hits at one end of the rod with velocity 'u' in a direction perpendicular to the rod. The collision is completely elastic. After collision, particle comes to rest. The ratio of masses `(m/M)` is `1/x`. The value of 'x' will be ______.


Three identical blocks A, B and C are placed on horizontal frictionless surface. The blocks A and C are at rest. But A is approaching towards B with a speed 10 m/s. The coefficient of restitution for all collision is 0.5. The speed of the block C just after the collision is ______.


Answer carefully, with reason:

Is the total linear momentum conserved during the short time of an inelastic collision of two balls ?


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×