मराठी

Describe the locus of vertices of all isosceles triangles having a common base. - Mathematics

Advertisements
Advertisements

प्रश्न

Describe the locus of vertices of all isosceles triangles having a common base.

आकृती

उत्तर


The locus of vertices of all isosceles triangles having a common base will be the perpendicular bisector of the common base of the triangles.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 16: Loci (Locus and Its Constructions) - Exercise 16 (B) [पृष्ठ २४१]

APPEARS IN

सेलिना Mathematics [English] Class 10 ICSE
पाठ 16 Loci (Locus and Its Constructions)
Exercise 16 (B) | Q 10 | पृष्ठ २४१

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Draw an angle ABC = 75°. Find a point P such that P is at a distance of 2 cm from AB and 1.5 cm from BC.


Construct a rhombus ABCD whose diagonals AC and BD are 8 cm and 6 cm respectively. Find by construction a point P equidistant from AB and AD and also from C and D. 


In the given figure ABC is a triangle. CP bisects angle ACB and MN is perpendicular bisector of BC. MN cuts CP at Q. Prove Q is equidistant from B and C, and also that Q is equidistant from BC and AC. 


In given figure, ABCD is a kite. AB = AD and BC =CD. Prove that the diagona AC is the perpendirular bisector of the diagonal BD. 


Draw and describe the lorus in  the following cases: 

The locus of points at a distance of 4 cm from a fixed line. 


Draw and describe the lorus in the following cases: 

The lorus of points inside a circle and equidistant from two fixed points on the circle .


State and draw the locus of a swimmer maintaining the same distance from a lighthouse.


Without using set squares or protractor.
(i) Construct a ΔABC, given BC = 4 cm, angle B = 75° and CA = 6 cm.
(ii) Find the point P such that PB = PC and P is equidistant from the side BC and BA. Measure AP.


Ruler and compasses only may be used in this question. All construction lines and arcs must be clearly shown, and be of sufficient length and clarity to permit assessment.
(i) Construct a ΔABC, in which BC = 6 cm, AB = 9 cm and ∠ABC = 60°.
(ii) Construct the locus of the vertices of the triangles with BC as base, which are equal in area to ΔABC.
(iii) Mark the point Q, in your construction, which would make ΔQBC equal in area to ΔABC, and isosceles.
(iv) Measure and record the length of CQ.


Use ruler and compass to answer this question. Construct ∠ABC = 90°, where AB = 6 cm, BC = 8 cm.

  1. Construct the locus of points equidistant from B and C.
  2. Construct the locus of points equidistant from A and B.
  3. Mark the point which satisfies both the conditions (a) and (b) as 0. Construct the locus of points keeping a fixed distance OA from the fixed point 0.
  4. Construct the locus of points which are equidistant from BA and BC.

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×