मराठी

In the Given Figure Abc is a Triangle. Cp Bisects Angle Acb and Mn is Perpendicular Bisector of Bc - Mathematics

Advertisements
Advertisements

प्रश्न

In the given figure ABC is a triangle. CP bisects angle ACB and MN is perpendicular bisector of BC. MN cuts CP at Q. Prove Q is equidistant from B and C, and also that Q is equidistant from BC and AC. 

आकृती

उत्तर

Join BQ and draw perpendicular bisector of AC cutting AC at L. 

In Δ QBN and ΔQCN 

QN = QN 

BN =NC 

∠ QNB = ∠ QNC = 90 degree.

Therefore,  ∠ QBN and ∠.QCN are congruent .

Hence Q is equidistant from B and C. 

In  Δ QNC and Δ QLC 

QC= QC 

∠ QLC = ∠ QNC = 90 degree. 

∠ QCL =∠ QCN (PC being angle bisector) 

Therefore, .Δ QNC and Δ QLC are congruent. 

Therefore, QL = QN. 

Hence Q is equidistant from BC and AC. 

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 16: Loci - Exercise 16.1

APPEARS IN

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Draw an angle ABC = 75°. Find a point P such that P is at a distance of 2 cm from AB and 1.5 cm from BC.


State the locus of a point in a rhombus ABCD, which is equidistant

  1. from AB and AD;
  2. from the vertices A and C.

Draw a straight line AB of 9 cm. Draw the locus of all points which are equidistant from A and B. Prove your statement. 


AB and CD are two intersecting lines. Find a point equidistant from AB and CD, and also at a distance of 1.8 cm from another given line EF. 


Construct a Δ XYZ in which XY= 4 cm, YZ = 5 cm and ∠ Y = 1200. Locate a point T such that ∠ YXT is a right angle and Tis equidistant from Y and Z. Measure TZ. 


Describe completely the locus of points in the following cases: 

Point in a plane equidistant from a given line. 


Describe completely the locus of points in the following cases: 

Centre of a circle of varying radius and touching the two arms of ∠ ABC. 


Draw and describe the locus in the following cases :

The locus of a point in the rhombus ABCD which is equidistant from the point  A and C


Construct a triangle BPC given BC = 5 cm, BP = 4 cm and .

i) complete the rectangle ABCD such that:
a) P is equidistant from AB and BCV
b) P is equidistant from C and D.
ii) Measure and record the length of AB.


Without using set squares or protractor construct:
(i) Triangle ABC, in which AB = 5.5 cm, BC = 3.2 cm and CA = 4.8 cm.
(ii) Draw the locus of a point which moves so that it is always 2.5 cm from B.
(iii) Draw the locus of a point which moves so that it is equidistant from the sides BC and CA.
(iv) Mark the point of intersection of the loci with the letter P and measure PC.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×