English

In the Given Figure Abc is a Triangle. Cp Bisects Angle Acb and Mn is Perpendicular Bisector of Bc - Mathematics

Advertisements
Advertisements

Question

In the given figure ABC is a triangle. CP bisects angle ACB and MN is perpendicular bisector of BC. MN cuts CP at Q. Prove Q is equidistant from B and C, and also that Q is equidistant from BC and AC. 

Diagram

Solution

Join BQ and draw perpendicular bisector of AC cutting AC at L. 

In Δ QBN and ΔQCN 

QN = QN 

BN =NC 

∠ QNB = ∠ QNC = 90 degree.

Therefore,  ∠ QBN and ∠.QCN are congruent .

Hence Q is equidistant from B and C. 

In  Δ QNC and Δ QLC 

QC= QC 

∠ QLC = ∠ QNC = 90 degree. 

∠ QCL =∠ QCN (PC being angle bisector) 

Therefore, .Δ QNC and Δ QLC are congruent. 

Therefore, QL = QN. 

Hence Q is equidistant from BC and AC. 

shaalaa.com
  Is there an error in this question or solution?
Chapter 16: Loci - Exercise 16.1

APPEARS IN

Frank Mathematics - Part 2 [English] Class 10 ICSE
Chapter 16 Loci
Exercise 16.1 | Q 11

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Describe the locus of vertices of all isosceles triangles having a common base.


Construct a triangle ABC, with AB = 6 cm, AC = BC = 9 cm. Find a point 4 cm from A and equidistant from B and C. 


Construct a rhombus ABCD whose diagonals AC and BD are 8 cm and 6 cm respectively. Find by construction a point P equidistant from AB and AD and also from C and D. 


A and B are fixed points while Pis a moving point, moving in a way that it is always equidistant from A and B. What is the locus of the path traced out by the pcint P? 


Describe completely the locus of point in  the following cases: 

Midpoint of radii of a circle. 


Construct a triangle ABC, such that AB= 6 cm, BC= 7.3 cm and CA= 5.2 cm. Locate a point which is equidistant from A, B and C.


Use ruler and compass only for the following question. All construction lines and arcs must be clearly shown.

  1. Construct a ΔABC in which BC = 6.5 cm, ∠ABC = 60°, AB = 5 cm.
  2. Construct the locus of points at a distance of 3.5 cm from A.
  3. Construct the locus of points equidistant from AC and BC.
  4. Mark 2 points X and Y which are at a distance of 3.5 cm from A and also equidistant from AC and BC. Measure XY.

Construct a Δ ABC, with AB = 6 cm, AC = BC = 9 cm; find a point 4 cm from A and equidistant from B and C.


Using a ruler and compass only: 
(i) Construct a triangle ABC with BC = 6 cm, ∠ABC = 120° and AB = 3.5 cm.
(ii) In the above figure, draw a circle with BC as diameter. Find a point 'P' on the circumference of the circle which is equidistant from Ab and BC.
Measure ∠BCP.


Use ruler and compasses only for the following questions:
Construct triangle BCP, when CB = 5 cm, BP = 4 cm, ∠PBC = 45°.
Complete the rectangle ABCD such that :
(i) P is equidistant from AB and BC and
(ii) P is equidistant from C and D. Measure and write down the length of AB.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×