हिंदी

In the Given Figure Abc is a Triangle. Cp Bisects Angle Acb and Mn is Perpendicular Bisector of Bc - Mathematics

Advertisements
Advertisements

प्रश्न

In the given figure ABC is a triangle. CP bisects angle ACB and MN is perpendicular bisector of BC. MN cuts CP at Q. Prove Q is equidistant from B and C, and also that Q is equidistant from BC and AC. 

आकृति

उत्तर

Join BQ and draw perpendicular bisector of AC cutting AC at L. 

In Δ QBN and ΔQCN 

QN = QN 

BN =NC 

∠ QNB = ∠ QNC = 90 degree.

Therefore,  ∠ QBN and ∠.QCN are congruent .

Hence Q is equidistant from B and C. 

In  Δ QNC and Δ QLC 

QC= QC 

∠ QLC = ∠ QNC = 90 degree. 

∠ QCL =∠ QCN (PC being angle bisector) 

Therefore, .Δ QNC and Δ QLC are congruent. 

Therefore, QL = QN. 

Hence Q is equidistant from BC and AC. 

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 16: Loci - Exercise 16.1

APPEARS IN

फ्रैंक Mathematics - Part 2 [English] Class 10 ICSE
अध्याय 16 Loci
Exercise 16.1 | Q 11

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Use ruler and compasses only for this question:

I. Construct  ABC, where AB = 3.5 cm, BC = 6 cm and ABC = 60o.
II. Construct the locus of points inside the triangle which are equidistant from BA and BC.
III. Construct the locus of points inside the triangle which are equidistant from B and C.
IV. Mark the point P which is equidistant from AB, BC and also equidistant from B and C. Measure and records the length of PB.


On a graph paper, draw the line x = 6. Now, on the same graph paper, draw the locus of the point which moves in such a way that its distantce from the given line is always equal to 3 units 


Construct a triangle BCP given BC = 5 cm, BP = 4 cm and ∠PBC = 45°.

  1. Complete the rectangle ABCD such that:
    1. P is equidistant from AB and BC.
    2. P is equidistant from C and D.
  2. Measure and record the length of AB. 

Construct a rhombus ABCD with sides of length 5 cm and diagonal AC of length 6 cm. Measure ∠ ABC. Find the point R on AD such that RB = RC. Measure the length of AR. 


In  Δ PQR, s is a point on PR such that ∠ PQS = ∠  RQS . Prove thats is equidistant from PQ and QR. 


Describe completely the locus of points in the following cases: 

Centre of a circle of varying radius and touching the two arms of ∠ ABC. 


Using ruler and compasses construct:
(i) a triangle ABC in which AB = 5.5 cm, BC = 3.4 cm and CA = 4.9 cm.
(ii) the locus of point equidistant from A and C.
(iii) a circle touching AB at A and passing through C.


Use ruler and compasses only for this question. Draw a circle of radius 4 cm and mark two chords AB and AC of the circle of length f 6 cm and 5 cm respectively.
(i) Construct the locus of points, inside the circle, that are equidistant from A and C. Prove your construction.
(ii) Construct the locus of points, inside the circle, that are equidistant from AB and AC.


Use ruler and compasses only for the following questions:
Construct triangle BCP, when CB = 5 cm, BP = 4 cm, ∠PBC = 45°.
Complete the rectangle ABCD such that :
(i) P is equidistant from AB and BC and
(ii) P is equidistant from C and D. Measure and write down the length of AB.


Given ∠BAC (Fig), determine the locus of a point which lies in the interior of ∠BAC and equidistant from two lines AB and AC.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×