English

A and B Are Fixed Points While Pis a Moving Point, Moving in a Way that It is Always Equidistant from a and B - Mathematics

Advertisements
Advertisements

Question

A and B are fixed points while Pis a moving point, moving in a way that it is always equidistant from A and B. What is the locus of the path traced out by the pcint P? 

Diagram

Solution

The locus of path traced by point P equidistant from A and B is the perpendicular bisector of the line segment joining the two points. 

shaalaa.com
  Is there an error in this question or solution?
Chapter 16: Loci - Exercise 16.1

APPEARS IN

Frank Mathematics - Part 2 [English] Class 10 ICSE
Chapter 16 Loci
Exercise 16.1 | Q 12

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

On a graph paper, draw the lines x = 3 and y = –5. Now, on the same graph paper, draw the locus of the point which is equidistant from the given lines.


Describe the locus of vertices of all isosceles triangles having a common base.


Describe the locus of a point P, so that:

AB2 = AP2 + BP2,

where A and B are two fixed points.


Use ruler and compasses only for this question. Draw a circle of radius 4 cm and mark two chords AB and AC of the circle of lengths 6 cm and 5 cm respectively.
(i) Construct the locus of points, inside the circle, that are equidistant from A and C. prove your construction.
(ii) Construct the locus of points, inside the circle that are equidistant from AB and AC. 


Draw two intersecting lines to include an angle of 30°. Use ruler and compasses to locate points which are equidistant from these Iines and also 2 cm away from their point of intersection. How many such points exist? 


AB and CD are two intersecting lines. Find a point equidistant from AB and CD, and also at a distance of 1.8 cm from another given line EF. 


In  Δ PQR, s is a point on PR such that ∠ PQS = ∠  RQS . Prove thats is equidistant from PQ and QR. 


In given figure, ABCD is a kite. AB = AD and BC =CD. Prove that the diagona AC is the perpendirular bisector of the diagonal BD. 


Using only a ruler and compass construct ∠ABC = 120°, where AB = BC = 5 cm.
(i) Mark two points D and E which satisfy the condition that they are equidistant from both ABA and BC.
(ii) In the above figure, join AD, DC, AE and EC. Describe the figures:
(a) AECB, (b) ABD, (c) ABE.


Ruler and compasses only may be used in this question. All construction lines and arcs must be clearly shown, and be of sufficient length and clarity to permit assessment.
(i) Construct a ΔABC, in which BC = 6 cm, AB = 9 cm and ∠ABC = 60°.
(ii) Construct the locus of the vertices of the triangles with BC as base, which are equal in area to ΔABC.
(iii) Mark the point Q, in your construction, which would make ΔQBC equal in area to ΔABC, and isosceles.
(iv) Measure and record the length of CQ.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×