English

Draw Two Intersecting Lines to Include an Angle of 30° . Use Ruler and Compasses to Locate Points Which Are Equidistant from These Iines and Also 2 Cm Away from Their Point of Intersection. - Mathematics

Advertisements
Advertisements

Question

Draw two intersecting lines to include an angle of 30°. Use ruler and compasses to locate points which are equidistant from these Iines and also 2 cm away from their point of intersection. How many such points exist? 

Diagram
Sum

Solution 1

Draw an angle bisectcr PQ and RS of angles formed by the lines m and n. From centre draw a circle with radius 2 cm, whidi intersect the angle bisectors at a, b, c and d respectively. 

Hence, a, b, c and d are the required four points. 

shaalaa.com

Solution 2

AB and CD are two intersecting lines at an angle of 30°. Their point of intersection is O.
Draw MON and ROS, the bisector of angles between AB and CD. On ON, locate a point P such that OP = 2 cm.
On OR locate a point Q such that OQ = 2 cm.
Since, P and Q are on the angle bisectors of angles between AB and CD, hence each of P and Q is equidistant from AB and CD.

Also, OP = 2 cm
Hence, P and Q are the required points.

shaalaa.com
  Is there an error in this question or solution?
Chapter 14: Loci (Locus and its Constructions) - Figure Based Questions

APPEARS IN

ICSE Mathematics [English] Class 10
Chapter 14 Loci (Locus and its Constructions)
Figure Based Questions | Q 22
Frank Mathematics - Part 2 [English] Class 10 ICSE
Chapter 16 Loci
Exercise 16.1 | Q 3

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

On a graph paper, draw the lines x = 3 and y = –5. Now, on the same graph paper, draw the locus of the point which is equidistant from the given lines.


Construct a triangle ABC, with AB = 5.6 cm, AC = BC = 9.2 cm. Find the points equidistant from AB and AC; and also 2 cm from BC. Measure the distance between the two points obtained. 


State the locus of a point in a rhombus ABCD, which is equidistant

  1. from AB and AD;
  2. from the vertices A and C.

Draw a straight line AB of 9 cm. Draw the locus of all points which are equidistant from A and B. Prove your statement. 


Construct a rhombus ABCD with sides of length 5 cm and diagonal AC of length 6 cm. Measure ∠ ABC. Find the point R on AD such that RB = RC. Measure the length of AR. 


Construct a rhombus ABCD whose diagonals AC and BD are 8 cm and 6 cm respectively. Find by construction a point P equidistant from AB and AD and also from C and D. 


Construct a triangle ABC, such that AB= 6 cm, BC= 7.3 cm and CA= 5.2 cm. Locate a point which is equidistant from A, B and C.


Using a ruler and compass only: 
(i) Construct a triangle ABC with BC = 6 cm, ∠ABC = 120° and AB = 3.5 cm.
(ii) In the above figure, draw a circle with BC as diameter. Find a point 'P' on the circumference of the circle which is equidistant from Ab and BC.
Measure ∠BCP.


Using ruler and compasses construct:
(i) a triangle ABC in which AB = 5.5 cm, BC = 3.4 cm and CA = 4.9 cm.
(ii) the locus of point equidistant from A and C.
(iii) a circle touching AB at A and passing through C.


Without using set squares or protractor construct:
(i) Triangle ABC, in which AB = 5.5 cm, BC = 3.2 cm and CA = 4.8 cm.
(ii) Draw the locus of a point which moves so that it is always 2.5 cm from B.
(iii) Draw the locus of a point which moves so that it is equidistant from the sides BC and CA.
(iv) Mark the point of intersection of the loci with the letter P and measure PC.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×