English

Without Using Set Squares Or Protractor Construct: (I) Triangle Abc, in Which Ab = 5.5 Cm, Bc = 3.2 Cm and Ca = 4.8 Cm. (Ii) Draw the Locus of a Point Which Moves So that It is Always 2.5 Cm from B. - Mathematics

Advertisements
Advertisements

Question

Without using set squares or protractor construct:
(i) Triangle ABC, in which AB = 5.5 cm, BC = 3.2 cm and CA = 4.8 cm.
(ii) Draw the locus of a point which moves so that it is always 2.5 cm from B.
(iii) Draw the locus of a point which moves so that it is equidistant from the sides BC and CA.
(iv) Mark the point of intersection of the loci with the letter P and measure PC.

Sum

Solution

(i) Draw a triangle by given measurements.
(ii) The locus of a point which moves so that it is always 2·5 cm from B is a circle as shown in the figure.
(iii) The locus of a point is bisector of ∠ACB.

(iv) The circle and bisector intersect in two points PD = 0·9 cm and PC = 3·4 cm.

shaalaa.com
  Is there an error in this question or solution?
Chapter 14: Loci (Locus and its Constructions) - Figure Based Questions

APPEARS IN

ICSE Mathematics [English] Class 10
Chapter 14 Loci (Locus and its Constructions)
Figure Based Questions | Q 20

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Construct a triangle ABC, with AB = 6 cm, AC = BC = 9 cm. Find a point 4 cm from A and equidistant from B and C. 


Construct a triangle BCP given BC = 5 cm, BP = 4 cm and ∠PBC = 45°.

  1. Complete the rectangle ABCD such that:
    1. P is equidistant from AB and BC.
    2. P is equidistant from C and D.
  2. Measure and record the length of AB. 

AB and CD are two intersecting lines. Find a point equidistant from AB and CD, and also at a distance of 1.8 cm from another given line EF. 


In the given figure ABC is a triangle. CP bisects angle ACB and MN is perpendicular bisector of BC. MN cuts CP at Q. Prove Q is equidistant from B and C, and also that Q is equidistant from BC and AC. 


In Δ PQR, bisectors of  ∠ PQR and ∠ PRQ meet at I. Prove that I is equidistant from the three sides of the triangle , and PI bisects ∠ QPR . 


Construct a triangle ABC, such that AB= 6 cm, BC= 7.3 cm and CA= 5.2 cm. Locate a point which is equidistant from A, B and C.


State and draw the locus of a swimmer maintaining the same distance from a lighthouse.


State and draw the locus of a point equidistant from two given parallel lines.


Using ruler and compasses construct:
(i) a triangle ABC in which AB = 5.5 cm, BC = 3.4 cm and CA = 4.9 cm.
(ii) the locus of point equidistant from A and C.
(iii) a circle touching AB at A and passing through C.


Use ruler and compasses only for this question. Draw a circle of radius 4 cm and mark two chords AB and AC of the circle of length f 6 cm and 5 cm respectively.
(i) Construct the locus of points, inside the circle, that are equidistant from A and C. Prove your construction.
(ii) Construct the locus of points, inside the circle, that are equidistant from AB and AC.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×