English

In Li.Pqr, Bisectors of Lpqr and Lprq Meet at I. Prove that I is Equidistant from the Three Sides of the Triangle 1 and Pi Bi Sects L Qpr . - Mathematics

Advertisements
Advertisements

Question

In Δ PQR, bisectors of  ∠ PQR and ∠ PRQ meet at I. Prove that I is equidistant from the three sides of the triangle , and PI bisects ∠ QPR . 

Diagram

Solution

Since I lies on bisector of  ∠ R, I is equidistant from PR and QR. 

Again I lies on the bisector of ∠ Q , I is equidistant from PQ and QR. 

Hence , I is equi distant from alI sides of the triangle. 

Therefore, I lies on the bisector of ∠ P i.e  ∠ QPR .

shaalaa.com
  Is there an error in this question or solution?
Chapter 16: Loci - Exercise 16.1

APPEARS IN

Frank Mathematics - Part 2 [English] Class 10 ICSE
Chapter 16 Loci
Exercise 16.1 | Q 15

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

On a graph paper, draw the lines x = 3 and y = –5. Now, on the same graph paper, draw the locus of the point which is equidistant from the given lines.


On a graph paper, draw the line x = 6. Now, on the same graph paper, draw the locus of the point which moves in such a way that its distantce from the given line is always equal to 3 units 


Describe the locus of a point P, so that:

AB2 = AP2 + BP2,

where A and B are two fixed points.


Construct a triangle BCP given BC = 5 cm, BP = 4 cm and ∠PBC = 45°.

  1. Complete the rectangle ABCD such that:
    1. P is equidistant from AB and BC.
    2. P is equidistant from C and D.
  2. Measure and record the length of AB. 

Two straight roads AB and CD cross each other at Pat an angle of 75°  . X is a stone on the road AB, 800m from P towards B. BY taking an appropriate scale draw a figure to locate the position of a pole, which is equidistant from P and X, and is also equidistant from the roads. 


In the given figure ABC is a triangle. CP bisects angle ACB and MN is perpendicular bisector of BC. MN cuts CP at Q. Prove Q is equidistant from B and C, and also that Q is equidistant from BC and AC. 


Without using set squares or protractor construct a triangle ABC in which AB = 4 cm, BC = 5 cm and ∠ABC = 120°.
(i) Locate the point P such that ∠BAp = 90° and BP = CP.
(ii) Measure the length of BP.


State and draw the locus of a point equidistant from two given parallel lines.


Construct a Δ ABC, with AB = 6 cm, AC = BC = 9 cm; find a point 4 cm from A and equidistant from B and C.


Using a ruler and compass only: 
(i) Construct a triangle ABC with BC = 6 cm, ∠ABC = 120° and AB = 3.5 cm.
(ii) In the above figure, draw a circle with BC as diameter. Find a point 'P' on the circumference of the circle which is equidistant from Ab and BC.
Measure ∠BCP.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×