English

State and Draw the Locus of a Swimmer Maintaining the Same Distance from a Lighthouse. - Mathematics

Advertisements
Advertisements

Question

State and draw the locus of a swimmer maintaining the same distance from a lighthouse.

Diagram
Sum

Solution


Proof: The locus of the swimmer will be a circle with light house as the centre and the same distance between the light house and the swimmer as radius.

shaalaa.com
  Is there an error in this question or solution?
Chapter 14: Loci (Locus and its Constructions) - Figure Based Questions

APPEARS IN

ICSE Mathematics [English] Class 10
Chapter 14 Loci (Locus and its Constructions)
Figure Based Questions | Q 3

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Construct a triangle ABC with AB = 5.5 cm, AC = 6 cm and ∠BAC = 105°

Hence:

1) Construct the locus of points equidistant from BA and BC

2) Construct the locus of points equidistant from B and C.

3) Mark the point which satisfies the above two loci as P. Measure and write the length of PC.


Describe the locus of a point P, so that:

AB2 = AP2 + BP2,

where A and B are two fixed points.


O is a fixed point. Point P moves along a fixed line AB. Q is a point on OP produced such that OP = PQ. Prove that the locus of point Q is a line parallel to AB.


Ruler and compasses may be used in this question. All construction lines and arcs must be clearly shown and be of sufficient length and clarity to permit assessment.

  1. Construct a ΔABC, in which BC = 6 cm, AB = 9 cm and angle ABC = 60°.
  2. Construct the locus of all points inside triangle ABC, which are equidistant from B and C.
  3. Construct the locus of the vertices of the triangles with BC as base and which are equal in area to triangle ABC.
  4. Mark the point Q, in your construction, which would make ΔQBC equal in area to ΔABC, and isosceles.
  5. Measure and record the length of CQ.

Draw two intersecting lines to include an angle of 30°. Use ruler and compasses to locate points which are equidistant from these Iines and also 2 cm away from their point of intersection. How many such points exist? 


Construct a Δ XYZ in which XY= 4 cm, YZ = 5 cm and ∠ Y = 1200. Locate a point T such that ∠ YXT is a right angle and Tis equidistant from Y and Z. Measure TZ. 


In Δ ABC, B and Care fixed points. Find the locus of point A which moves such that the area of Δ ABC remains the same. 


Draw and describe the lorus in  the following cases: 

The locus of points at a distance of 4 cm from a fixed line. 


Describe completely the locus of points in the following cases: 

Point in a plane equidistant from a given line. 


Using only a ruler and compass construct ∠ABC = 120°, where AB = BC = 5 cm.
(i) Mark two points D and E which satisfy the condition that they are equidistant from both ABA and BC.
(ii) In the above figure, join AD, DC, AE and EC. Describe the figures:
(a) AECB, (b) ABD, (c) ABE.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×