मराठी

दिखाइए कि एक गुणोत्तर श्रेणी के प्रथम n पदों के योगफल तथा (n + 1) वें पद से (2n)वें पद तक के पदों के योगफल का अनुपात rn1rn है। - Mathematics (गणित)

Advertisements
Advertisements

प्रश्न

दिखाइए कि एक गुणोत्तर श्रेणी के प्रथम n पदों के योगफल तथा (n + 1) वें पद से (2n)वें पद तक के पदों के योगफल का अनुपात `1/"r"^"n"` है।

बेरीज

उत्तर

मान लीजिए गुणोत्तर श्रेणी का पहला पद a और सार्व अनुपात = `1/"r"^"n"` हों, तब

n पदों का योगफल = `("a"(1 - "r"^"n"))/(1 - "r")` .............(i)

(n + 1)वाँ पद = `"ar"^("n"+ 1 - 1)` = arn 

∴ arn + arn + 1 + arn + 2 + ....... n पदों तक

= `("ar"^"n"(1 - "r"^"n"))/(1 - "r")` ...............(ii)

समीकरण (i) को (ii) से भाग देने पर,

`("n पदों का योगफल")/("अगले n पदों का योगफल") = ("a"(1 - "r"^"n"))/(1 - "r") ÷ ("ar"^"n"(1 - "r"^"n"))/(1 - "r")`

= `("a"(1 - "r"^"n"))/(1 - "r") xx (1 - "r")/("ar"^"n" (1 - "r"^ "n"))`

= `1/"r"^"n"`

shaalaa.com
गुणोत्तर श्रेणी
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 9: अनुक्रम तथा श्रेणी - प्रश्नावली 9.3 [पृष्ठ २०७]

APPEARS IN

एनसीईआरटी Mathematics [Hindi] Class 11
पाठ 9 अनुक्रम तथा श्रेणी
प्रश्नावली 9.3 | Q 24. | पृष्ठ २०७

संबंधित प्रश्‍न

उस गुणोत्तर श्रेणी का 12वाँ पद ज्ञात कीजिए, जिसका 8वाँ पद 192 तथा सार्व अनुपात 2 है।


किसी गुणोत्तर श्रेणी का 5वाँ, 8वाँ तथा 11वाँ पद क्रमशः p, q तथा s हैं तो दिखाइए कि q2 = ps.


किसी गुणोत्तर श्रेणी का चौथा पद उसके दूसरे पद का वर्ग है तथा प्रथम पद –3 है तो 7वाँ पद ज्ञात कीजिए।


अनुक्रम का कौन सा पद:

`2, 2sqrt2, 4, ......; 128` है?


अनुक्रम का कौन सा पद:

`sqrt3, 3, 3 sqrt3`, ….; 729 है?


x के किस मान के लिए संख्याएँ `-2/7, "x", (-7)/2` गुणोत्तर श्रेणी में हैं?


निम्नलिखित गुणोत्तर श्रेणी का योगफल निर्दिष्ट पदों तक ज्ञात कीजिए।

0.15, 0.015, 0.0015, ….., 20 पदों तक


निम्नलिखित गुणोत्तर श्रेणी का योगफल निर्दिष्ट पदों तक ज्ञात कीजिए।

x3, x5, x7, ….. n पदों तक (यदि x ≠ ± 1)


अनुक्रम 8, 88, 888, 8888, …. के n पदों का योग ज्ञात कीजिए।


दिखाइए कि अनुक्रम a, ar, ar2, … arn – 1 तथा A, AR, AR2, …. ARn – 1 के संगत पदों के गुणनफल से बना अनुक्रम गुणोत्तर श्रेणी होती है तथा सार्व अनुपात ज्ञात कीजिए। 


ऐसे चार पद ज्ञात कीजिए जो गुणोत्तर श्रेणी में हो, जिसका तीसरा पद प्रथम पद से 9 अधिक हो तथा दूसरा पद चौथे पद से 18 अधिक हो।


यदि किसी गुणोत्तर श्रेणी का प्रथम तथा nवाँ पद क्रमशः a तथा b हैं, एवं P, n पदों का गुणनफल हो, तो सिद्ध कीजिए कि P2 = (ab)n


यदि a, b, c तथा d गुणोत्तर श्रेणी में हैं तो दिखाइए कि (a2 + b2 + c2) (b2 + c2 + d2) = (ab + bc + cd)2


ऐसी दो संख्याएँ ज्ञात कीजिए जिनको 3 तथा 81 के बीच रखने पर प्राप्त अनुक्रम एक गुणोत्तर श्रेणी बन जाए।


सभी x, y ϵ N के लिए f(x + y) = f(x). f(y) को संतुष्ट करता हुआ f एक ऐसा फलन है कि f(1) = 3 एवं `sum_("x" = 1)^ "n"` f(x) = 120 तो n का मान ज्ञात करो।


किसी गुणोत्तर श्रेणी का प्रथम पद 1 है। तीसरे एवं पाँचवें पदों का योग 90 हो तो गुणोत्तर श्रेणी का सार्व अनुपात ज्ञात कीजिए।


यदि `("a" + "bx")/("a" - "bx") = ("b" + "cx")/("b" - "cx") = ("c" + "dx")/("c" - "dx")` (x ≠ 0) हो, तो दिखाइए कि a, b, c, d गुणोत्तर श्रेणी में है।


यदि x2 – 3x + p = 0 के मूल a तथा b हैं तथा x2 – 12x + q = 0, के मूल c तथा d हैं, जहाँ a, b, c, d गुणोत्तर श्रेणी के रूप में हैं। सिद्ध कीजिए कि (q + p) : (q – p) = 17 : 15


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×