मराठी

Draw a right triangle in which the sides (other than hypotenuse) are of lengths 4 cm and 3 cm. the construct another triangle whose sides are `5/3` times the corresponding sides of the given triangle. Give the justification of the construction. - Mathematics

Advertisements
Advertisements

प्रश्न

Draw a right triangle in which the sides (other than hypotenuse) are of lengths 4 cm and 3 cm. the construct another triangle whose sides are `5/3` times the corresponding sides of the given triangle. Give the justification of the construction.

उत्तर

It is given that sides other than hypotenuse are of lengths 4 cm and 3 cm. Clearly, these will be perpendicular to each other.

The required triangle can be drawn as follows.

Step 1

Draw a line segment AB = 4 cm. Draw a ray SA making 90° with it.

Step 2

Draw an arc of 3 cm radius while taking A as its centre to intersect SA at C. Join BC. ΔABC is the required triangle.

Step 3

Draw a ray AX making an acute angle with AB, opposite to vertex C.

Step 4

Locate 5 points (as 5 is greater in 5 and 3), A1, A2, A3, A4, A5, on line segment AX such that AA1 = A1A2= A2A3 = A3A4 = A4A5.

Step 5

Join A3B. Draw a line through A5 parallel to A3B intersecting extended line segment AB at B'.

Step 6

Through B', draw a line parallel to BC intersecting extended line segment AC at C'. ΔAB'C' is the required triangle.

Justification

The construction can be justified by proving that

`AB' =5/3 AB, B'C' = 5/3 BC, AC' = 5/3 AC`

In ΔABC and ΔAB'C',

∠ABC = ∠AB'C' (Corresponding angles)

∠BAC = ∠B'AC' (Common)

∴ ΔABC ∼ ΔAB'C' (AA similarity criterion)

`=> (AB)/(AB')=(BC)/(B'C') = (AC)/(AC') ...1`

In ΔAA3B and ΔAA5B',

∠A3AB = ∠A5AB' (Common)

∠AA3B = ∠AA5B' (Corresponding angles)

∴ ΔAA3B ∼ ΔAA5B' (AA similarity criterion)

`=> (AB)/(AB') = (`

`=>(AB)/(AB') = 3/5 ....2`

On comparing equations (1) and (2), we obtain

`(AB)/(AB') = (BC)/(B'C') = (AC)/(AC') = 3/5`

`=> AB' =5/3 AB, B'C' = 5/3 BC, AC' = 5/3 AC`

This justifies the construction.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 11: Constructions - Exercise 11.1 [पृष्ठ २२०]

APPEARS IN

एनसीईआरटी Mathematics [English] Class 10
पाठ 11 Constructions
Exercise 11.1 | Q 7 | पृष्ठ २२०

संबंधित प्रश्‍न

Construct a triangle of sides 4 cm, 5cm and 6cm and then a triangle similar to it whose sides are `2/3` of the corresponding sides of the first triangle. Give the justification of the construction.

 


Draw a ΔABC in which BC = 6 cm, AB = 4 cm and AC = 5 cm. Draw a triangle similar to ΔABC with its sides equal to (3/4)th of the corresponding sides of ΔABC.


Construct a triangle similar to ΔABC in which AB = 4.6 cm, BC = 5.1 cm, ∠A = 60° with scale factor 4 : 5.


Draw a line segment AB of length 7 cm. Using ruler and compasses, find a point P on AB such that `(AP)/(AB) = 3/5 `.


Draw a line segment AB of length 7 cm. Using ruler and compasses, find a point P on AB such that `(AP)/(AB)=3/5`.

 

 

Find the co-ordinates of the centroid of the Δ PQR, whose vertices are P(3, –5), Q(4, 3) and R(11, –4) 


ΔRHP ~ ΔNED, In ΔNED, NE = 7 cm. ∠D = 30°, ∠N = 20°, `"HP"/"ED" = 4/5`, then construct ΔRHP and ∆NED


If a triangle similar to given ΔABC with sides equal to `3/4` of the sides of ΔABC is to be constructed, then the number of points to be marked on ray BX is ______.


What is the ratio `(AC)/(BC)` for the following construction: A line segment AB is drawn. A single ray is extended from A and 12 arcs of equal lengths are cut, cutting the ray at A1, A2… A12.A line is drawn from A12 to B and a line parallel to A12B is drawn, passing through the point A6 and cutting AB at C.


To construct a triangle similar to a given ∆ABC with its sides `7/3` of the corresponding sides of ∆ABC, draw a ray BX making acute angle with BC and X lies on the opposite side of A with respect to BC. The points B1, B2, ...., B7 are located at equal distances on BX, B3 is joined to C and then a line segment B6C' is drawn parallel to B3C where C' lies on BC produced. Finally, line segment A'C' is drawn parallel to AC.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×