मराठी

दर्शाइए कि किसी चतुर्भुज की सम्मुख भुजाओं के मध्य-बिंदुओं को मिलाने वाले रेखाखंड परस्पर समद्विभाजित करते हैं। - Mathematics (गणित)

Advertisements
Advertisements

प्रश्न

दर्शाइए कि किसी चतुर्भुज की सम्मुख भुजाओं के मध्य-बिंदुओं को मिलाने वाले रेखाखंड परस्पर समद्विभाजित करते हैं।

बेरीज

उत्तर

मान लीजिए ABCD एक चतुर्भुज है जिसमें P, Q, R और S क्रमशः भुजाओं AB, BC, CD और DA के मध्य-बिंदु हैं। PQ, QR, RS, SP और BD को मिलाएं।

ΔABD में, S और P क्रमशः AD और AB के मध्य-बिंदु हैं। अतः मध्य-बिंदु प्रमेय का प्रयोग करके यह कहा जा सकता है कि

SP || BD और SP = `1/2` BD ... (1)

इसी तरह ΔBCD,

QR || BD और QR = `1/2` BD ... (2)

समीकरण (1) और (2) से, हम प्राप्त करते हैं

SP || QR और SP = QR

चतुर्भुज SPQR में, सम्मुख भुजाओं का एक युग्म बराबर और समांतर होता है

एक दूसरे। इसलिए, SPQR एक समांतर चतुर्भुज है।

हम जानते हैं कि एक समांतर चतुर्भुज के विकर्ण परस्पर समद्विभाजित करते हैं।

इसलिए, PR और QS एक दूसरे को समद्विभाजित करते हैं।

shaalaa.com
त्रिभुज की दो भुजाओं के मध्यबिंदुओं का प्रमेय
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 8: चतुर्भुज - प्रश्नावली 8.2 [पृष्ठ १८१]

APPEARS IN

एनसीईआरटी Mathematics [Hindi] Class 9
पाठ 8 चतुर्भुज
प्रश्नावली 8.2 | Q 6. | पृष्ठ १८१

संबंधित प्रश्‍न

ABCD एक चतुर्भुज है जिसमें P, Q, R और S क्रमश: भुजाओं AB, BC, CD और DA के मध्य-बिंदु हैं (देखिए आकृति में)। AC उसका एक विकर्ण है। दर्शाइए कि

  1. SR || AC और SR = `1/2 AC` है।
  2. PQ = SR है।
  3. PQRS एक समांतर चतुर्भुज है।


ABCD एक आयत है, जिसमें P, Q, R और S क्रमश: भुजाओं AB, BC, CD और DA के मध्य-बिंदु हैं। दर्शाइए कि चतुर्भुज PQRS एक समचतुर्भुज है।


ABCD एक समलंब है, जिसमें AB || DC है। साथ ही, BD एक विकर्ण है और E भुजा AD का मध्य-बिंदु है। E से होकर एक रेखा AB के समांतर खींची गई है, जो BC को F पर प्रतिच्छेद करती है (देखिए आकृति में)। दर्शाइए कि F भुजा BC का मध्य-बिंदु है।


एक समांतर चतुर्भुज ABCD में E और F क्रमश: भुजाओं AB और CD के मध्य-बिंदु हैं (देखिए आकृति में)। दर्शाइए कि रेखाखंड AF और EC विकर्ण BD को समत्रिभाजित करते हैं।


ABC एक त्रिभुज है जिसका कोण C समकोण है। कर्ण AB के मध्य-बिंदु M से होकर BC के समांतर खींची गई रेखा AC को D पर प्रतिच्छेद करती है। दर्शाइए कि

  1. D भुजा AC का मध्य-बिंदु है। 
  2. MD ⊥ AC है। 
  3. CM = MA = `1/2 AB` है।

D, E और F क्रमश: एक समबाहु त्रिभुज ABC की भुजाओं BC, CA और AB के मध्य-बिंदु हैं। दर्शाइए कि ∆DEF भी एक समबाहु त्रिभुज है।


आकृति में ΔABC समबाहु त्रिभुज है जिसमें बिंदु F, D, E यह क्रमशः भुजा AB, भुजा BC, भुजा AC के मध्यबिंदु हैं तो सिद्ध कीजिए कि ΔFED यह समबाहु त्रिभुज है।


आकृति में रेख PD यह ΔPQR की माध्यिका है। बिंदु T यह PD का मध्यबिंदु है। QT को आगे बढ़ाने पर यह PR को बिंदु M पर प्रतिच्छेदित करता है। तो सिदघ कीजिए कि `"PR"/"PM" = 1/3`

[सूचना: DN || QM खींचें।]


संलग्न आकृति में `square` ABCD समलंब चतुर्भुज है। AB || DC है। रेख AD तथा रेख BC के मध्यबिंदु क्रमशः P तथा Q हैं, तो सिद्ध कीजिए कि PQ || AB तथा PQ = `1/2` (AB + DC)


संलग्न आकृति में `square` ABCD यह समलंब चतुर्भुज है। AB || DC, बिंदु M तथा बिंदु N क्रमशः विकर्ण AC तथा विकर्ण DB के मध्यबिंदु है तो सिद्ध कीजिए कि MN || AB


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×