मराठी

एक त्रिभुज ABC की भुजा BC पर एक बिंदु D इस प्रकार स्थित है कि ∠ADC = ∠BAC है। दर्शाइए कि CA2 = CB.CD है। - Mathematics (गणित)

Advertisements
Advertisements

प्रश्न

एक त्रिभुज ABC की भुजा BC पर एक बिंदु D इस प्रकार स्थित है कि ∠ADC = ∠BAC है। दर्शाइए कि CA2 = CB.CD है।

बेरीज

उत्तर

∆ABC और ∆DAC में, हमारे पास है

∠ADC = ∠BAC और ∠C = ∠C

इसलिए, समरूपता के AA-कसौटी से, हमारे पास है 

∆ABC ~ ∆DAC

`\Rightarrow \frac{"AB"}{"DA"}=\frac{"BC"}{"AC"}=\frac{"AC"}{"DC"}`

`\Rightarrow \frac{"CB"}{"CA"}=\frac{"CA"}{"CD"}`

shaalaa.com
त्रिभुजों की समरूपता के लिए कसौटियाँ
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 6: त्रिभुज - प्रश्नावली 6.3 [पृष्ठ १५५]

APPEARS IN

एनसीईआरटी Mathematics [Hindi] Class 10
पाठ 6 त्रिभुज
प्रश्नावली 6.3 | Q 13. | पृष्ठ १५५

संबंधित प्रश्‍न

आकृति में, ∆ODC ~ ∆OBA, ∠BOC = 125° और ∠CDO = 70° हैं। ∠DOC, ∠DCO और ∠OAB ज्ञात कीजिए।

 


समलंब ABCD, जिसमें AB || DC है, के विकर्ण AC और BD परस्पर O पर प्रतिच्छेद करते हैं। दो त्रिभजों की समरूपता कसौटी का प्रयोग करते हुए, दर्शाइए कि `"OA"/"OC" = "OB"/"OD"` है।


आकृति में, ΔABC के शीर्षलंब AD और CE परस्पर बिंदु P पर प्रतिच्छेद करते हैं। दर्शाइए कि:

 

ΔABD ∼ ΔCBE


आकृति में, ΔABC के शीर्षलंब AD और CE परस्पर बिंदु P पर प्रतिच्छेद करते हैं। दर्शाइए कि:

 

ΔPDC ∼ ΔBEC


CD और GH क्रमशः ∠ACB और ∠EGF के ऐसे समद्विभाजक हैं कि बिंदु D और H क्रमशः ∆ABC और ∆FEG की भुजाओं AB और FE पर स्थित हैं। यदि ∆ABC ∼ ∆FEG है, तो दर्शाइए कि:

  1. `"CD"/"GH" = "AC"/"FG"`
  2. ∆DCB ∼ ∆HGE
  3. ∆DCA ∼ ∆HGF

आकृति में, AB = AC वाले, एक समद्विबाहु त्रिभुज ABC की बढ़ाई गई भुजा CB पर स्थित E एक बिंदु है। यदि AD ⊥ BC और EF ⊥ AC है तो सिद्ध कीजिए कि ∆ABD ∼ ∆ECF है।

 


एक त्रिभुज ABC की भुजाएँ AB और BC तथा माध्यिका AD एक अन्य त्रिभुज PQR की क्रमशः भुजाओं PQ और QR तथा माध्यिका PM के समानुपाती है (देखिए आकृति)। दर्शाइए कि ∆ABC ∼ ∆PQR है।

 


आकृति में एक वृत्त की दो जीवाएँ AB और CD बढ़ाने पर परस्पर बिंदु P पर प्रतिच्छेद करती हैं। सिद्ध कीजिए कि

(i) ∆PAC ∼ ∆PDB
(ii) PA.PB = PC.PD

 


यदि ΔABC ~ ΔEDF और ΔABC, ΔDEF के समरूप नहीं है, तो निम्नलिखित से कौन सत्य नहीं है? 


यदि ∆ABC ~ ∆DEF, AB = 4 cm, DE = 6 cm, EF = 9 cm और FD = 12 cm है, तो ∆ABC का परिमाप ज्ञात कीजिए। 


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×