Advertisements
Advertisements
प्रश्न
Find a and b if following function is continuous at the point or on the interval indicated against them:
f(x) `{:(= (4tanx + 5sinx)/("a"^x - 1)",", "for" x < 0),(= (9)/(log2)",", "for" x = 0),(= (11x + 7x*cosx)/("b"^x - 1)",", "for" x > 0):}`
उत्तर
f(x) is continuous at x = 0
∴ `lim_(x -> 0^-) "f"(x)` = f(0)
∴ `lim_(x -> 0) [(4tanx + 5sinx)/("a"^x - 1)] = 9/log2`
∴ `lim_(x -> 0) [((4tanx + 5sinx)/x)/(("a"^x - 1)/x)]` ...[∵ x → 0, x ≠ 0]
= `9/log2`
∴ `(lim_(x -> 0)((4tanx)/x + (5sinx)/x))/(lim_(x -> 0) ("a"^x - 1)/x) = 9/log2`
∴ `(4lim_(x -> 0) (tanx)/x + 5 lim_(x -> 0) (sinx)/x)/(lim_(x -> 0) ("a"^x - 1)/x) = 9/log2`
∴ `(4(1) + 5(1))/(log"a") = 9/log2 ...[because lim_(x -> 0) ("a"^x - 1)/x = log"a"]`
∴ `9/log"a" = 9/log2`
∴ log a = log 2
∴ a = 2
Also `lim_(x -> 0^+) "f"(x)` = f(0)
∴ `lim_(x -> 0) (11x + 7x*cosx)/("b"^x - 1) = 9/log2`
∴ `lim_(x -> 0) ((11x + 7x cosx)/x)/(("b"^x - 1)/x) = 9/log2` ...[∵ x → 0, x ≠ 0]
∴ `(lim_(x -> 0)(11 + 7cosx))/(lim_(x -> 0)(("b"^x - 1)/x)) = 9/log2`
∴ `(11 + 7cos0)/log"b" = 9/log2 ...[because lim_(x -> 0) ("a"^x - 1)/x = log"a"]`
∴ `(11 + 7(1))/log"b" = 9/log2`
∴ 9log b = 18log 2
∴ log b = 2log 2
= log(2)2
∴ log b = log 4
∴ b = 4
∴ a = 2 and b = 4
APPEARS IN
संबंधित प्रश्न
Examine whether the function is continuous at the points indicated against them:
f(x) = x3 − 2x + 1, for x ≤ 2
= 3x − 2, for x > 2, at x = 2
Examine the continuity of f(x) = x3 + 2x2 − x − 2 at x = − 2
Examine whether the function is continuous at the points indicated against them:
f(x) `{:(= x^3 - 2x + 1",", "if" x ≤ 2),(= 3x - 2",", "if" x > 2):}}` at x = 2
Examine whether the function is continuous at the points indicated against them :
f(x) `{:(= x/(tan3x) + 2",", "for" x < 0),(= 7/3",", "for" x ≥ 0):}} "at" x = 0`
Find all the point of discontinuities of f(x) = [x] on the interval (− 3, 2).
Discuss the continuity of the function f(x) = |2x + 3|, at x = `(−3)/(2)`
Show that following function have continuous extension to the point where f(x) is not defined. Also find the extension :
f(x) = `(1 - cos2x)/sinx`, for x ≠ 0
Discuss the continuity of the following function at the point indicated against them :
f(x) `{:(=("e"^(1/x) - 1)/("e"^(1/x) + 1)",", "for" x ≠ 0),(= 1",", "for" x = 0):}}` at x = 0
Discuss the continuity of the following function at the point indicated against them :
f(x) `{:(=(4^x - 2^(x + 1) + 1)/(1 - cos 2x)",", "for" x ≠ 0),(= (log 2)^2/2",", "for" x = 0):}}` at x = 0.
The following function has a removable discontinuity? If it has a removable discontinuity, redefine the function so that it become continuous :
f(x) = `((3 - 8x)/(3 - 2x))^(1/x)`, for x ≠ 0
The following function has a removable discontinuity? If it has a removable discontinuity, redefine the function so that it become continuous :
f(x) `{:(= 3x + 2",", "for" -4 ≤ x ≤-2),(= 2x - 3";", "for" -2 < x ≤ 6):}`
If f(x) = `(sqrt(2 + sin x) - sqrt(3))/(cos^2x), "for" x ≠ pi/2`, is continuous at x = `pi/2` then find `"f"(pi/2)`
If f(x) = `(cos^2 x - sin^2 x - 1)/(sqrt(3x^2 + 1) - 1)` for x ≠ 0, is continuous at x = 0 then find f(0)
If f(x) `{:(= (24^x - 8^x - 3^x + 1)/(12^x - 4^x - 3^x + 1)",", "for" x ≠ 0), (= "k"",", "for" x = 0):}}` is continuous at x = 0, find k
If f(x) `{:(= (5^x + 5^(-x) - 2)/(x^2)"," , "for" x ≠ 0),(= k",", "for" x = 0):}}` is continuous at x = 0, find k
For what values of a and b is the function
f(x) `{:(= (x^2 - 4)/(x - 2)",", "for" x < 2),(= "a"x^2 - "b"x + 3",", "for" 2 ≤ x < 3),(= 2x - "a" + "b"",", "for" x ≥ 3):}}` continuous for every x on R?
Select the correct answer from the given alternatives:
f(x) = `{:(= (2^(cotx) - 1)/(pi - 2x)",", "for" x ≠ pi/2),(= log sqrt(2)",", "for" x = pi/2):}`
Select the correct answer from the given alternatives:
If f(x) `{:(= "a"x^2 + "b"x + 1",", "for" |x −1| ≥ 3), (= 4x + 5",", "for" -2 < x < 4):}` is continuous everywhere then,
Select the correct answer from the given alternatives:
f(x) `{:(= ((16^x - 1)(9^x - 1))/((27^x - 1)(32^x - 1))",", "for" x ≠ 0),(= "k"",", "for" x = 0):}` is continuous at x = 0, then ‘k’ =
Discuss the continuity of the following function at the point(s) or on the interval indicated against them:
f(x) = `(cos4x - cos9x)/(1 - cosx)`, for x ≠ 0
f(0) = `68/15`, at x = 0 on `- pi/2 ≤ x ≤ pi/2`
Discuss the continuity of the following function at the point(s) or on the interval indicated against them:
f(x) `{:(= 2x^2 + x + 1",", "for" |x - 3| ≥ 2),(= x^2 + 3",", "for" 1 < x < 5):}`
Identify discontinuity for the following function as either a jump or a removable discontinuity on their respective domain:
f(x) `{:(= x^2 + x - 3,"," "for" x ∈ [ -5, -2)),(= x^2 - 5,"," "for" x ∈ (-2, 5]):}`
Find k if following function is continuous at the point indicated against them:
f(x) `{:(= (45^x - 9^x - 5^x + 1)/(("k"^x - 1)(3^x - 1))",", "for" x ≠ 0),(= 2/3",", "for" x = 0):}}` at x = 0
Find f(a), if f is continuous at x = a where,
f(x) = `(1 - cos[7(x - pi)])/(5(x - pi)^2`, for x ≠ π at a = π
Solve using intermediate value theorem:
Show that 5x − 6x = 0 has a root in [1, 2]
If f(x) = `{((x^4 - 1/81)/(x^3 - 1/27), x ≠ 1/3), (k, x = 1/3):}` is continuous at x = `1/3`, then the value of k is ______
If f(x) = `{:{(tan^-1|x|; "when" x ≠ 0), (pi/4; "when" x = 0):}`, then ______
If function `f(x)={((x^2-9)/(x-3), ",when "xne3),(k, ",when "x =3):}` is continuous at x = 3, then the value of k will be ______.
If f(x) = `{{:(tanx/x + secx",", x ≠ 0),(2",", x = 0):}`, then ______.
If the function f(x) = `[tan(π/4 + x)]^(1/x)` for x ≠ 0 is = K for x = 0 continuous at x = 0, then K = ?
If f(x) = `{{:(log(sec^2 x)^(cot^2x)",", "for" x ≠ 0),(K",", "for" x = 0):}`
is continuous at x = 0, then K is ______.
For what value of k, the function defined by
f(x) = `{{:((log(1 + 2x)sin^0)/x^2",", "for" x ≠ 0),(k",", "for" x = 0):}`
is continuous at x = 0 ?
If f(x) = `{{:((3 sin πx)/(5x),",", x ≠ 0),(2k,",", x = 0):}`
is continuous at x = 0, then the value of k is ______.
`lim_(x rightarrow 0) (e^(x^2) - cosx)/x^2` is equal to ______.