मराठी

Find the Ratio in Which the Line Y = -1 Divides the Line Segment Joining (6, 5) and (-2, -11). Find the Coordinates of the Point of Intersection. - Mathematics

Advertisements
Advertisements

प्रश्न

Find the ratio in which the line y = -1 divides the line segment joining (6, 5) and (-2, -11). Find the coordinates of the point of intersection. 

बेरीज

उत्तर

Let R (x, -1) be the point on the line y = - 1 which divides the line segment PQ in the ratio k: 1. 

Coordinates of R are, 

x = `(2"k" + 6)/("k" + 1) ,`      -1 = `(-11 "k" + 5)/("k" + 1)`

x = `(-2 (3/5) + 6)/(3/5 + 1),   => - "k" - 1 = - 11 "k" + 5`

`=>  "x"  = (-6 + 30)/8        => 10 "k" = 6`

x = 3        ⇒ k = 3/5   .....(1)

Hence, the required ratio is 3: 5 and the point of inter sec tion is (3, - 1). 

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 12: Distance and Section Formulae - Exercise 12.2

APPEARS IN

फ्रँक Mathematics - Part 2 [English] Class 10 ICSE
पाठ 12 Distance and Section Formulae
Exercise 12.2 | Q 7

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×