Advertisements
Advertisements
प्रश्न
Find the roots of the following quadratic equations, if they exist, by the method of completing the square 2x2 + x + 4 = 0
उत्तर
2x2 + x + 4 = 0
⇒ 2x2 + x = -4
On dividing both sides of the equation, we get
`⇒ x^2 + 1/(2x) = 2`
`⇒ x^2 + 2 × x × 1/4 = -2`
On adding (1/4)2 to both sides of the equation, we get
`⇒ (x)^2 + 2 × x × 1/4 + (1/4)^2 = (1/4)^2 - 2 `
`⇒ (x + 1/4)^2 = 1/16 - 2`
`⇒ (x + 1/4)^2 = -31/16`
However, the square of number cannot be negative.
Therefore, there is no real root for the given equation
संबंधित प्रश्न
The sum of the reciprocals of Rehman's ages, (in years) 3 years ago and 5 years from now is 1/3. Find his present age.
Find the roots of the following quadratic equations (if they exist) by the method of completing the square.
`x^2-(sqrt2+1)x+sqrt2=0`
`5x^2-6x-2=0`
Solve the following quadratic equation by completing the square method.
x2 + 2x – 5 = 0
Fill in the gap and complete.
Form the quadratic equation from the roots given below.
3 and –10
Form the quadratic equation from the roots given below.
\[2 - \sqrt{5}, 2 + \sqrt{5}\]
A motor boat whose speed in still water is 18 km/hr takes 1 hour more to go 24 km upstream than to return downstream to the same spot. Find the speed of the stream.
The value of \[\sqrt{6 + \sqrt{6 + \sqrt{6 +}}} . . . .\] is
The positive root of `sqrt(3"x"^2 + 6)` = 9 is: